Data Visualization

Get the right information, with visual impact, to the people who need it

Advanced Analytics | Artificial Intelligence | Data Visualization | Learn SAS | Machine Learning
0
[텍스트 분석 #1]텍스트 토픽 분류로 빠른 인사이트 확보하기

비정형 텍스트 데이터는 인류가 생성하는 가장 큰 데이터입니다. 더 나은 비즈니스 결정을 내리고, 제품 전략을 알리고, 고객 경험 개선에 도움이 되는 유용한 정보가 바로 이 데이터에 포함되어 있습니다. 비정형 텍스트 데이터의 잠재력을 최대한 활용해야 하는 이유입니다. 본 시리즈에서는 텍스트 데이터에서 인사이트를 얻는 주요 방법과 이를 위한 SAS 솔루션을 살펴봅니다. 전

Analytics | Data Visualization
Rick Wicklin 0
Decile plots in SAS

I previously showed how to create a decile calibration plot for a logistic regression model in SAS. A decile calibration plot (or "decile plot," for short) is used in some fields to visualize agreement between the data and a regression model. It can be used to diagnose an incorrectly specified

Advanced Analytics | Analytics | Data Visualization | Learn SAS
0
SAS Viyaのワードクラウド分析を用いた消費者の声分析例

01. はじめに 今回のポスティングでは、SAS Viyaの「テキストトピック」という機能を用いたSNSの消費者の声の分析例を紹介したいと思います。分析の手法として「ワードクラウド分析」という方法を使いましたが、こちらについても後ほどお話します。SNS上の書き込みデータを分析することで、ビジネスに役立てられる洞察を得ることができますので、最後まで読んでいただければと思います。   02. 消費者の声分析の一般的な流れ SNS上の消費者の声分析は、一般的に大きく3つの段階に分けることができると思います。そのステップ①は様々なSNSプラットフォームから消費者の声を集める「データ収集」です。ステップ②は、収集したデータを分析する段階です。データ分析の手段はいくつかがありますが、本記事では、「ワードクラウド分析」という手法を用いることにします。最後のステップは、ビジネスメリットに繋げるように分析結果を活用する段階です。分析結果を元により意思決定し、施策を実施する段階です。本記事では、3つの段階の中で2段階目の「データ分析」、具体的には、「ワードクラウドを用いた分析」について説明します。   03. ワードクラウド分析とは? ワードクラウドというのはテキストデータの意味をより直感的に把握するための分析の一つ手法です。 テキストデータを単語に分割し、単語ごとの出現頻度をカウントし、その頻度に応じた大きさでその単語を視覚的に表示してくれます。 つまり、テキストや文章が何に関して語られているのか、そのキーワードを簡単に見つけ出すことができる手法になります。 例えば、SNS上の書き込みをテキストデータ化して分析し、顧客や消費者が今どんな事に興味を持っているのか、どんな不満があるのか、などを把握することができます。 (出典:https://awario.com/) 私はニュースなどのメディアでアメリカのトランプ大統領がどんな単語を何回使ったか、トランプ大統領のツイッターを分析したワードクラウドを見たことがあります。例えば、上のイメージは、2018年から2019年までのトランプ大統領のツイッターでつぶやかれた単語のワードクラウドですが、「border」と「wall」が一番使われた単語ということが一目で分かります。   04. SAS Viyaのワードクラウドの特徴 SAS Viyaのワードクラウドの特徴についてご紹介します。 まず、自動的に分析対象のテキストデータを単語に分割した上で解析します。所謂テキストマイニングと言いますが、その結果として、それぞれの文章がどんな話題(トピック)に関して語っているのかを分析し、トピックごとにキーワードを頻度に応じた大きさで確認することができます。また必要に応じて、気になるトピックやキーワードの元の文章を確認することもできるようになっています。 また、分析の際、冠詞や、助詞、副詞など、意味がない単語は自動で外して分析を行います。 これも、SAS Viyaのワードクラウドの一つの特徴なのですが、例えば、Open Source系のプログラミング言語で分析をすると、英語の 「the」や「a」などは、 分析者自身でなんとかして、取らなければいけないこともありますが、SASでは自動でその作業を行います。 さらに、書き込み内容がネガティブな内容なのか、ポジティブなのか、中立であるか、確認できる機能もあります。この機能は、「センチメント分析」、 日本語では「感情分析」と呼ばれますが、SASではワンクリックで簡単に実行できます。   05. 消費者の声分析例 それでは、SAS Viya の「テキストトピック」という機能を用いた消費者の声分析デモをご紹介いたします。 ▲ 準備したデータについて 日本では最近「天高く馬肥ゆる秋」になったので、季節感が感じられるように「天気」に関したデータを準備しました。また、オーストラリアのシドニーとカナダのバンクーバーのツイッターデータを収集しました。この二つの地域を設定した理由は、現在のシドニーは昼間の平均気温が約20度で、少し暖かいか、涼しい天候ですが、バンクーバーは約5度と少し寒く、対立的な地域を選ぶことで、明確な結果を得たかったからです。(個人的な理由もあり、キャリア管理の上司がSASオーストラリアのシドニーで働いていて、同期の1人はSASカナダのバンクーバーにいるので、毎回オンライン会議で会う2人の季節環境が気になったのです。同期と出会った新入社員研修についての記事はこちら) データの対象期間は、10月15日から10月23日まで、9日間、データの取得の際に使ったキーワードは、「weather」、「today’s weather」、「weekend weather」、「winter」、「summer」という5つのキーワードを使いました。こういった条件で実際にツイッターから集められたデータは、シドニーが351件、バンクーバーが277件でした。 ▲ 「天気」に関するシドニーの消費者の声分析 まず、シドニーの消費者の声のワードクラウド分析結果を見てみましょう。 「雨」に関するトピックが44件で、トピック全体で1位になっております。こちらのトピックをクリックすると、このトピックに関連する用語・キーワードを右側の画面で確認できます。「rainy」の比重が最も大きいことが分かります。 (出典:https://www.holiday-weather.com) 雨に関するデータが多い理由は、データを収集していた10月15日から23日前後にシドニーは天気が曇ったり、雨が降ったりしたからだと考えられます。

Analytics | Data Visualization
Mary Osborne 0
Anatomy of a swing state

Every presidential candidate has a list of states they’re expected to win, but there are always states that are too close to call because they have similar numbers of registered voters for each of the two dominant political parties: Democrat and Republican. It’s in these “swing” states that candidates invest

Analytics | Data Visualization | Students & Educators
Lee Ellen Harmer 0
Sanitize before you share: thinking critically about COVID-19 data

Being overwhelmed by the volume of news isn’t a new phenomenon. But today, our sense of being overwhelmed has increased and triggered feelings of fear, frustration and anxiety, given the ongoing developments and research tied to COVID-19. How do we sift through the volume of information facing us and truly understand whether the news we consume is factual or based on

Advanced Analytics | Analytics | Customer Intelligence | Data Management | Data Visualization | Machine Learning
Suneel Grover 0
SAS Customer Intelligence 360: Data visualization, location analytics and geospatial insights

Everything happens somewhere, and much of our customer data includes location information. Websites include x, y coordinates in semi-structured click streams, and the mobile apps your prospects depend on frequently support device location to provide a personalized, targeted experience. As my SAS peer Robby Powell said: "Human brains are hardwired

Advanced Analytics | Customer Intelligence | Data Management | Data Visualization
Suneel Grover 0
SAS Customer Intelligence 360: Visual analytics, sankey diagrams and customer journeys

We live in the age of data. From global warming stats to customer behavior patterns, new technologies have made it easier to collect, store, access and analyze information. But our use of these technologies has also eroded our attention spans and fueled post-truth misunderstandings. To combat these trends, the question

Advanced Analytics | Artificial Intelligence | Customer Intelligence | Data Visualization | Machine Learning
Suneel Grover 0
SAS Customer Intelligence 360: Make better decisions with analytically driven marketing

According to the SAS Experience 2030 global study, by the year 2030 67% of in-person customer engagements (think sales assistance and information queries) will be completed by smart machines rather than humans. And while it may seem a bit ironic, the most personalized customer experiences could involve no people at

Advanced Analytics | Analytics | Customer Intelligence | Data Management | Data Visualization | Machine Learning
Suneel Grover 0
SAS Customer Intelligence 360: Automated explanation and supervised segmentation

One of the wonderful aspects about my client-facing role at SAS is the breadth of audiences that I get to work with. No matter where you fall on this list: Data engineer. Business or marketing analyst. Citizen data scientist. Data scientist. Statistician. Executive. One topic is certain: We all love

1 2 3 55

Back to Top