SAS Events

Find out where you can connect with other SAS users

Learn SAS | SAS Events | Students & Educators | Work & Life at SAS
SAS新入社員研修の海外現地体験談ーーSASのマインドをフルゲットできるチャンス

前回のSASブログ「SAS新入社員研修の体験談」では、筆者の同僚がSAS新入社員研修のGlobal Customer Advisory Academyについて概要とオンラインでの実施について紹介しました。COVID-19の影響で、今年度の該当プログラムはオンラインで実施されましたが、昨年度までこのプログラムは、アメリカのノースカロライナ州にあるSAS本社を訪問し、参加するグローバルプログラムでした。本ブログでは、現地での実体験に関して、主にいくつかインパクトなポイントを紹介します。 筆者が当時SASに入社する際に、該当プログラムに参加するチャンスがあり、アメリカ本社の現地に行き、経験したことがありましたので、ここでその経験と感想を共有したいと思っています。まず簡潔に、現地で行われたスケジュールを紹介していきますと、 プログラム名:Global Customer Advisory Academy(以下CAアカデミーと呼びます) プログラム期間:18週間 8週間・アメリカ本社に行き、研修を開始(前半) 4週間・日本オフィスに戻り、実務ローテーションを実践 6週間・アメリカ本社で研修を継続し、完了後に日本オフィスに戻る(後半) 使う言語:英語(ローテーション期間は日本語) では、このプログラムで、現地で行われた時に最も印象的なポイントはいったい何でしょう。下記三つの面から紹介します。 企業文化(価値観と帰属感) グローバル視野と広い人脈 社会責任への意識とチームでのValue創出 それぞれについて、CAアカデミーで、どう遂行されていたのを詳細に紹介します。 1.企業文化 SASのコア価値観:Curious、Authentic、Passionate、Accountableという四つの柱があります。それらはSAS企業文化の最大要素となり、SAS社員も日々それらの素質を持ち、行動していくことが、強く推奨されています。 それらの価値観は具体的にどのようにCAアカデミー研修で表現されているのかといいますと、下記の通りです。 C-Suiteの方々からダイレクトなSASの歴史と戦略の紹介 SASの業界コンサルタントからSASと各業界の関わり方とビジネスモデルの専門指導 各部門の指導者・業界先輩からの激励 現地でのCAアカデミー研修では、直接SASのトップ経営層からSASの過去から、現在と未来を対面で語られるチャンスが複数回与えられています。新入社員として、短時間で、明白にSASという会社はどのようなビジネスをしてきて、これからどの方向に向かっているのかということを把握することができ、会社理念を認識することができるようになっています。アカデミーで、Authenticな会話ができるため、新入社員も各自自分の将来に繋がる会話をすることが多くなっています。そのような環境が備えられていることで、数週間のうちに、自然にSASの企業文化と理念を身に着けていきます。知識を吸収するというよりも、馴染んでいくということに近いです。 また、現地でCAアカデミーに参加した時に、各業界のコンサルタントが定期的に本社オフィスにきて、業界研究知識などを教えてくれました。普段それらのコンサルタントたちは、各地域にいて、とても忙しい方がほとんどです。その中には、会社顧問などをされていた方もいました。筆者が参加した時に、ヨーロッパで仕事されていたある業界リードランクのコンサルタントがSAS本社オフィスに渡航してきて、業界に関する彼の知見を教えてくれました。この教える仕事は、彼たちの本職ではなく、CAアカデミーからの依頼に応じて、自主参加するものなので、そのような単なる仕事に対する熱意だけではなく、後輩を育てる情熱(Passionate)や責任を持つ意識(Accountable)のところは当時の私たちにとっても痛感できました。 SASのCEOであるDr. Goodnightはこう言ったことがありました。 「If you treat employees like they make a difference, they will make a difference」 実際、筆者がSAS本社にいた期間では、まさにこの言葉を実体験することができました。当時入社したばかりで、プログラムに参加した当初は、まだまだ浅い考えや振る舞いをしたこともありましたが、そこでシニアな先輩、指導者の方、マネージャーまで色んな方から励まされて、自分のやったことが有意義であることとして扱ってくれていました。そして、仕事に対する意欲・動力・興味は高められていきました。それはいまになっても、前進するモチベーションになったりすることがよくあります。 また、恥ずかしながら、筆者は物事の根源に当たるものを追求する好奇心を持ち、色んなアイデアを試して、正直に意見を言う人間です。そのような素質は、SASのコア価値観のCurious・Authenticと一致し、CAアカデミーの時から重視されてきました。 そのようなプロセスの過程で、SASのコア価値観と共に、だんだんSASへの帰属感も育てることができました。   2.グローバル視野と広い人脈 SASはグローバル企業ですので、CAアカデミーでは色んな国から、色んな背景を持つ方が一緒に参加しています。さらに、現地では、それらのグローバルの同僚と同じホテルで14週間も一緒に過ごすことで、お互いへの理解を深め、グローバル範囲での深い絆を構築することができました。 そのような環境で、実際日々の研修では、同じ課題に対する広い視野からの違う観点が毎日の研修の中で飛び交っていました。そして、そこからディスカッションの時間が充分に用意され、違う観点のグローバル同僚との会話により、自らの視野も広げていくことができました。そのような違う観点から物事を考える思考力はとても大切なもので、いまでも重視しているものだと思っています。

Data for Good | SAS Events | Students & Educators
0
第五回Data for Good勉強会 活動レポート

SAS Japanでは”Data for Good”を目指す学生コミュニティ「SAS Japan Student Data for Good community」を運営しています。このコミュニティは、Data For Goodを題材にデータサイエンスの一連の流れを体験する場として設立されました。今回紹介する勉強会も、その活動の一環です。詳しくは「Data for Goodを通じて"本物の"データサイエンティストになろう!」の記事をご覧ください。活動の様子についてはFacebookにて共有していますので、そちらもご参考にしてください。 五回目の勉強会では海洋汚染をテーマに、Data for Goodの活用事例から課題設定の部分を学びました。また、今回は初めてオンラインでの開催をしましたので、その様子もお伝えしたいと思います。   海洋保護に向けたD4Gの取り組み/マイクロプラスチック問題 SDGsの一つに“海の豊かさを守ろう(LIFE BELOW WATER)”という項目があります。日本でも2020年7月からスーパーやコンビニエンスストアにてレジ袋の有料化が始まりました。その背景の一つにはマイクロプラスチック問題があります。コミュニティのメンバーがこのテーマでData for Goodに取り組んでいるので、今回はその活動について共有しました。 マイクロプラスチック問題とは、特に海洋環境において微小なプラスチック粒子が海洋生物に対し悪影響を及ぼしてしまうことです。また生物濃縮により海洋生物だけでなく、人間にも間接的に影響があります。レジ袋の有料化や製品へのスクラブ等使用の規制の動きが世界的に進んでいます。環境保全にいち早く取り組んでいる海外の先進諸国のデータをもとに、今後日本にも導入するべき取り組み、推進していくべき取り組みを明確にしようというのが今回の活動目的になります。 今回の勉強会の活動紹介では、この問題の現状と最新の研究、既に行われている取り組みの効果検証について取り上げました。意思決定の場に置いて、ある施策が目的とするものに対して効果があるのかどうかは非常に重要です。特にマイクロプラスチック問題のように規模が大きい問題に対してはその効果の大きさだけでなく、費用対効果にも注目しなければなりません。しかし、効果の推定には比較実験が必要になりますが多くの場合それは存在しないため、自然実験という考え方を用いてアプローチしていきます。 詳細については今後このブログの中でご紹介していきます。   海洋プラスチック汚染問題をデータで解決する 今回は、コミュニティーメンバーがテーマとして活動している「海洋汚染」に関連して、オランダに拠点を置く非営利のエンジニアリング環境団体 The Ocean Cleanupの事例を紹介しました。 The Ocean Cleanupは、太平洋で無人のゴミ回収装置であるクリーンアップシステムを開発しています。その運用においてある課題が浮かび上がりました。太平洋には多くのプラスチックが集まっているとされる「太平洋ゴミベルト」と呼ばれるエリアがありますが、その範囲は非常に広大かつ陸地から遙か遠くにあります。システムを運用する費用を考慮して、効率的にゴミを回収するにはどうすればよいでしょうか。この課題に対して、The Ocean Cleanupではビッグデータを用いて太平洋ゴミベルトの可視化を行いました。 調査団はこれまでの海洋研究の知見とともに、独自に大規模な調査を行いました。太平洋ゴミベルトのサイズ・位置・プラスチックの量・プラスチックの分布と4つの可視化の観点などから進められてきました。 プラスチック汚染は複雑で大規模な問題であるため、包括的で大掛かりな解決策が必要となります。そのため、データサイエンスの活用によって、問題を理解し効率よく解決するための知見が得られます。クリーンアップシステムでは、監視カメラや衛星との交信による位置情報から実際のシステムの動きや回収度を確かめることができます。ビックデータによる分析結果だけでなく、実際のパフォーマンスデータから得られた知見からより良いシステムの構築が現在も行われ続けています。 以上の話を踏まえて、最後に参加者同士でディスカッションを行いました。自分たちの生活と繋げて考えたり、事例の中で興味深かった点についてお互いに話すことが出来ました。また、海洋保護をテーマに今後活動していく上で考えるべき点についても触れながら議論を進められ、有意義な時間になりました。 今回は初めてのオンライン開催でしたが、オンラインであることの良さを活かして定期的に勉強会を企画するとともに、次回から更に質の高い勉強会をつくっていきたいと思います!   コミュニティメンバー募集中! SAS Japan Student Data for Good

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning | SAS Events
0
신속한 의사결정을 지원하는 '클라우드 네이티브' 애널리틱스

오늘 6월 17일(미 동부 시간 기준 16일) 온라인으로 개최한 ‘SAS 글로벌 포럼 2020’에서 SAS는 최신 클라우드 기술을 접목해 의사결정 과정을 가속화하는 AI 기반 엔터프라이즈 분석 플랫폼의 최신 버전 ‘SAS 바이야 4(SAS® Viya® 4)’를 공개하고 마이크로소프트와 클라우드 전환 가속화를 위한 전략적 파트너십 체결을 발표했습니다. 클라우드로 전환하는 비즈니스 IT 트렌드에 발 맞추어

Customer Intelligence | SAS Events
Shadi Shahin 0
SAS User Feedback Award winner helps drive innovation, shape SAS® 360 Engage software

SAS users help drive innovation, providing feedback on SAS products through various mediums, including customer advisory boards, communities, SASware ballot ideas and SAS Global Forum. The SAS User Feedback Award is presented annually to a user whose recommendations and insights lead to significant improvements to SAS software. This year SAS

Analytics | Artificial Intelligence | SAS Events
Oliver Schabenberger 0
SAS, Microsoft bring analytics to everyone, everywhere

Digital transformation continues to change our relationship with technology. As part of this change, the world is transforming from one of technology-literate people to one of people-literate technology. What do I mean by people-literate technology? I mean smart, automated, reliable, explainable decision systems that operate at scale. Analytics and AI

Analytics | SAS Events
처음 만나는 온라인 SAS 글로벌 포럼 2020을 소개합니다

코로나19가 전 세계적으로 확산되고 장기화되면서 우리는 요즘 삶의 방식이 새롭게 변화하는 모습을 실시간으로 지켜보고 있습니다. 학교에 가서 듣던 수업, 회사에 출근하여 처리하던 업무 등 늘 당연하게 여기던 일상이 대부분 언택트(Untact), 디지털 방식으로 전환되고 있지요. 처음이라 낯설고 아직 불안정한 부분들도 많지만, 지금의 위기 상황을 극복하고 모두가 하루 빨리 건강한 일상을 되찾으려면

Advanced Analytics | Analytics | Customer Intelligence | SAS Events
Suneel Grover 0
SAS Global Forum 2020: Hybrid marketing with SAS Customer Intelligence 360

After careful consideration of the evolving COVID-19 situation, SAS made the decision in March to cancel the in-person SAS Global Forum 2020 conference in Washington, DC. The health and well-being of SAS customers and employees was the company's top priority in making that decision, and while it's unfortunate that we

Data for Good | SAS Events | Students & Educators
0
第四回Data for Good勉強会 活動レポート

SAS Japanでは昨年末より”Data for Good”を目指す学生コミュニティ「SAS Japan Student Data for Good Community」を運営しています。このコミュニティは、Data for Goodを題材にデータサイエンスの一連の流れを体験する場として設立されました。今回紹介する勉強会も、その活動の一環です。詳しくは「Data for Goodを通じて"本物の"データサイエンティストになろう!」の記事をご覧ください。 四回目の勉強会ではFood Bankをテーマに、データを活用した課題解決の手法を学びました。 Food Bank   Food Bankとは、品質に問題がないにもかかわらず市場で流通出来なくなった食品を、福祉施設などに提供する活動のことです。この取り組みは食に困っている人の支援だけでなく、食品ロスの削減の一翼も担っています。しかしながら、Food Bankの高頻度の利用は自立を妨げることにも繋がりかねず、利用者への適切なサポートが多くのFood Bankで課題となっています。 イギリスのHuddersfieldを拠点とするFood BankのThe Welcome Centre(TWC)もその一つです。利用者のある一部は、日を追うごとにパントリーの訪問回数が増え、依存度を増していくことがTWC内で問題となっていました。とは言うものの、沢山の利用者がいるの中で「誰がFood Bankに依存しているのか」を調査するのは非常に労力のかかる作業です。そこでTWCはDatakind社と共同のプロジェクトを開始し、Analyticsを用いて効率的に依存性の高い人を発見し、優先的なサポートを施すことに挑戦しました。このプロジェクトでは、実際に Food Bankへの依存性を推定する機械学習モデルの構築 依存性の高い人にフラグを立て、優先して支援すべき利用者を可視化する ことに取り組んでいます。詳しい内容はDataKind社の事例紹介(英語)をご覧ください。 解くべき課題を設定する これらの事例を踏まえ、私たちのコミュニティが「日本のFood Bankの課題」に取り組む場合、解くべき課題は何か・解決するために誰のどのような意思決定が必要か・どのようなデータが必要か、ディスカッションを行いました。 議論を進めていく中で、さまざまな意見が飛び交いました。その中には、「寄付を受けた食料品を完璧に消費するために、新規パントリーを出店する際の食料品の需要予測が必要ではないか」や「限られたボランティアの中で食品配送ルートの改善が大きなインパクトをもたらすのではないか」といった意見が出ました。ディスカッションをすることで、自分では思いつかない新鮮な発想に触れることができたり、テーマに広がりを持たせられることを感じました。アナリティクスの結果を活用するアクションを考えるための「課題設定」を実際に体験できた勉強会になりました。 コミュニティメンバー募集中! SAS Japan Student Data for Good communityでは引き続き学生の参加者を募集しております。社会貢献を目指す活動を通してデータサイエンティストの役割である「課題の設定」から「データを用いた解決法の提示」までの一連の流れを経験できます。 興味をお持ちでしたら下記の事項をご記入の上JPNStudentD4G@sas.comまでご連絡ください。 大学名 / 高校名 名前 メールアドレス

Analytics | Artificial Intelligence | Customer Intelligence | SAS Events
Jeanne (Hyunjin) Byun 0
Experience 2030: 고객 경험의 미래

앞으로 10년 뒤, 2030년에는 어떤 브랜드가 살아남아 성장을 지속할 수 있을까요? SAS와 글로벌 시장조사기관 퓨처럼 리서치(Futurum Research)는 SAS 애널리틱스 익스피리언스 2019에서 ‘2030년 고객 경험의 미래(Experience 2030: The Future of Customer Experience)’ 설문조사 보고서를 발표했습니다. 다니엘 뉴먼(Daniel Newman) 퓨처럼 리서치 수석분석가 겸 창립 파트너는 더 많은 권한을 갖게 된(empowered) 소비자가 새롭게

Analytics | Artificial Intelligence | Data for Good | SAS Events
Jeanne (Hyunjin) Byun 0
SAS 애널리틱스 익스피리언스 2019, 글로벌 오피니언 리더들의 AI 바로 보기

지난 10월 21일부터 23일까지 이탈리아 밀라노에서 열린 'SAS 애널리틱스 익스피리언스 2019(SAS Analytics Experience 2019)'에서는 SAS의 머신러닝, 컴퓨터 비전, 자연어처리 등 AI 기술을 기반으로 기업들이 어떻게 실제(real) 가치를 실현할 수 있는지 보여주는 다양한 사례들이 소개되었습니다. 특히 행사 둘째 날에는 짐 굿나잇 SAS CEO, 올리버 샤벤버거 SAS 수석부회장 겸 최고운영책임자(COO) & 최고기술책임자(CTO)의

Advanced Analytics | Analytics | Artificial Intelligence | SAS Events
Jeanne (Hyunjin) Byun 0
SAS 애널리틱스 익스피리언스 2019, 밀라노를 접수하다!

지난 10월 21일부터 23일까지 이탈리아 혁신 기술의 중심지 밀라노에서는 유럽 최대 규모의 분석 컨퍼런스 ‘SAS 애널리틱스 익스피리언스 2019(SAS Analytics Experience 2019)’가 개최됐습니다. 3일간 밀라노 컨벤션 센터(Mico Milano Convention Centre)에서 진행된 올해 컨퍼런스에는 1,800명이 넘는 데이터 사이언티스트와 비즈니스 리더들이 모여 다양한 논의가 진행되었으며, 참석자들에게는 56개의 breakout 세션, 48개의 데모 부스, 그

Data for Good | SAS Events | Students & Educators
0
第三回Data for Good勉強会 活動レポート

SAS Japanでは昨年末より”Data for Good”を目指す学生コミュニティ「SAS Japan Student Data for Good community」を運営しています。このコミュニティは、Data For Goodを題材にデータサイエンスの一連の流れを体験する場として設立されました。今回紹介する勉強会も、その活動の一環です。詳しくは「Data for Goodを通じて"本物の"データサイエンティストになろう!」の記事をご覧ください。 三回目の勉強会ではヒートアイランド現象をテーマに、課題設定の部分を学びました。   ヒートアイランド対策、”どこ”から? ヒートアイランド現象とは、都市部の気温が周りに比べて高くなる現象です。その要因には、都市化による土地利用の変化や人間活動で排出される熱などがあります。対策事例として人口排熱削減のために次世代自動車の普及をしたり、保水性舗装の普及や屋上緑化を推進して地表面被服の改善を目指したりというものが行われています。 勉強会で取り上げたヒートアイランド対策事例の一つに、リッチモンドのヒートマッピングがあります。ヒートアイランド現象は都市部と郊外を比較して都市部の方が暑いという考え方が一般的です。しかし、植生域より人口被覆域の方が地表面からの大気加熱を大きくすることや、明るい色の舗装より暗い色の舗装の方が熱を吸収して暑くなることから、都市部の中でも暑さに対する強度は場所によって異なります。そこで、リッチモンドでは「都市の中でも特に暑さの影響を受けやすい場所を見分ける」ことで、対策を優先して行うべき場所の判断をサポートするためのプロジェクトを開始しました。そのアプローチとして、 リッチモンドをブロックで分けた各地点の気温・場所・時間のデータを収集する 観測データ+土地利用マップ+住民の収入データ→各地点のヒートアイランドに対する脆弱性レベルを定量化・可視化 に取り組んでいます。このプロジェクトは2017年にリッチモンドで開始し、今では様々な都市に活動の輪を広げています。詳しい内容はこちらの記事(英語)をご覧ください。   解くべき課題を設定する これらの知識を踏まえて、次は「課題設定」を行いました。自分たちでヒートアイランド現象という問題に対して、解くべき課題は何か・解決するために誰のどのような意思決定が必要か・どのようなデータが必要か、についてディスカッションをしました。 議論を進めていく中で、さまざまな意見が飛び交いました。その中には、テーマとして設定していたヒートアイランド現象を解決するというよりも、ヒートアイランド現象が”障壁”となって起きるであろう「熱中症を未然に防ぐ」というものを課題に設定するという意見がありました。その解決策として、リッチモンドの事例を応用した「ある人がいる地点の体感気温+その人の体温のデータをリアルタイムで収集し、熱中症のおそれがある場合に通知するアプリケーションの作成」などの案が出てきました。 ディスカッションをすることで、自分では思いつかない新鮮な発想に触れることができたり、テーマに広がりを持たせることが出来たりすることを感じました。アナリティクスの結果を活用するアクションを考えるための「課題設定」を実際に体験できたディスカッションになりました。   コミュニティメンバー募集中! SAS Japan Student Data for Good communityでは引き続き学生の参加者を募集しております。社会貢献を目指す活動を通してデータサイエンティストの役割である「課題の設定」から「データを用いた解決法の提示」までの一連の流れを経験できます。 興味をお持ちでしたら下記の事項をご記入の上JPNStudentD4G@sas.comまでご連絡ください。 大学名 / 高校名 名前 メールアドレス  

Analytics | SAS Events
SAS Global Forum 2019 論文紹介シリーズ 第4回「オペレーショナル・アナリティクス for IT」

前回は、ビジネス価値創出につながる「オペレーショナル・アナリティクス for Data Scientist」ユースケースの論文を紹介しました。今回は、企業様にとって、クラウド上のインフラアーキテクチャと分析プラットフォームのデプロイメントについて、ご紹介します。昨今、なぜ「コンテナ」が注目されているのか、そして、クラウドやコンテナ上に分析プラットフォームを移行/構築し、活用することに関心があるのであれば、ぜひ最後までご覧ください。 1.Cows or Chickens: How You Can Make Your Models into Containers モデルは特定の作業(新しいデータをスコアリングして予測を出すこと)として役割を果たしてきています。一方、コンテナは簡単に作成し、廃棄し、再利用できることができます。実際、それらは簡単にインテグレートさせ、パブリッククラウドとオンプレミス環境で実行できます。SASユーザは本論文を通じて、簡単にモデルの機能をコンテナに入れることができます。例えば、パブリッククラウドとオンプレミス環境でのDockerコンテナ。また、SASのModel Managerは様々なソース(オープンソース、SAS、コンテナ等々)からモデルの管理を行うことができます。したがって、この論文はそれらの基本知識と、どのようにSASの分析モデルをコンテナに入れることをメインに紹介します。 2.Orchestration of SAS® Data Integration Processes on AWS この論文では、Amazon Web Services(AWS)S3でのSASデータインテグレーションプロセスの構成について説明します。例としては、現在サポートしているお客様がクレジット報告書を生成するプロセスを毎日実行しています。そして、そのお客様の対象顧客は1カ月ごとに1回その報告を受け取ります。データ量としては、毎日に約20万の顧客情報が処理され、最終的に毎月約600万人の顧客へ報告することとなります。プロセスはオンプレミスデータセンターで始まり、続いてAWSのSASデータインテグレーションでAPR計算が行われ、最後にオンプレミスデータセンターで報告書が生成されます。さらに詳しい情報としては、彼らのアーキテクチャ全体はマイクロサービスを使われていますが、同時にAWS Lambda、簡易通知サービス(SNS)、Amazon Simple Storage Service(Amazon S3)、およびAmazon Elastic Compute Cloud(EC2)などの独立した高度に分離されたコンポーネントも使われています。つまり、それらにより、データパイプラインに対するトラブルシューティングが簡単になっていますが、オーケストレーションにLambda関数を使用することを選択すると、プロセスがある程度複雑になります。ただし、エンタープライズアーキテクチャにとって最も安定性、セキュリティ、柔軟性、および信頼性もあります。S3FやCloudWatch SSMのようなより単純な代替手段がありますが、それらはエンタープライズアーキテクチャにはあまり適していません。 3.SAS® on Kubernetes: Container Orchestration of Analytic Work Loads 現在、Big Dataの時代で、Advanced analyticsのためのインフラストラクチャに対するニーズが高まっています。また、分析自体に対して、最適化、予測が最も重要領域であり、小売業、金融業などの業界ではそれぞれ、分析に対する独自の課題を抱えています。この論文では、Google Cloud

1 2 3 26

Back to Top