Artificial Intelligence

Discover how AI is used today and how it will augment human experience in the future

Advanced Analytics | Analytics | Artificial Intelligence | Customer Intelligence | Data Visualization | Machine Learning
Suneel Grover 0
SAS Customer Intelligence 360: A look inside the black box of machine learning [Part 3]

In parts one and two of this blog posting series, we introduced machine learning models and the complexity that comes along with their extraordinary predictive abilities. Following this, we defined interpretability within machine learning, made the case for why we need it, and where it applies. In part three of

Advanced Analytics | Analytics | Artificial Intelligence | Customer Intelligence | Data Visualization | Machine Learning
Suneel Grover 0
SAS Customer Intelligence 360: A look inside the black box of machine learning [Part 2]

In part one of this blog posting series, we introduced machine learning models as a multifaceted and evolving topic. The complexity that gives extraordinary predictive abilities also makes these models challenging to understand. They generally don’t provide a clear explanation, and brands experimenting with machine learning are questioning whether they

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning
Makoto Unemi (畝見 真) 0
SAS Viya:Python API向けパッケージ:DLPyの最新版1.0拡張機能概要紹介

SASでは、従来からオープン・AIプラットフォームであるSAS Viyaの機能をPythonから効率的に活用いただくためのハイレベルなPython向けAPIパッケージであるDLPyを提供してきました。 従来のDLPyは、Viya3.3以降のディープラーニング(CNN)と画像処理(image action set)のために作成された、Python API向けハイレベルパッケージです。 DLPyではKerasに似たAPIを提供し、より簡潔なコーディングで高度な画像処理やCNNモデリングが可能でした。 そして、この度、このDLPyが大幅に機能拡張されました。 最新版DLPy1.0では、以下の機能が拡張されています。 ■ 従来からの画像データに加え、テキスト、オーディオ、そして時系列データを解析可能 ■ 新たなAPIの提供: ・ RNN に基づくタスク: テキスト分類、テキスト生成、そして 系列ラベリング(sequence labeling) ・ 一般物体検出(Object Detection) ・ 時系列処理とモデリング ・ オーディオファイルの処理と音声認識モデル生成 ■ 事前定義ネットワーク(DenseNet, DarkNet, Inception, and Yolo)の追加 ■ データビジュアライゼーションとメタデータハンドリングの拡張 今回はこれらの拡張機能の中から「一般物体検出(Object Detection)」機能を覗いてみましょう。 SAS Viyaでは従来から画像分類(資料画像1.の左から2番目:Classification)は可能でした。例えば、画像に映っている物体が「猫」なのか「犬」なのかを認識・分類するものです。 これに加えて、DLPy1.0では、一般物体検出(資料画像1.の左から3番目:Object Detection)が可能になりました。 資料画像1. (引用:Fei-Fei Li & Justin Johnson & Serena Yeung’s Lecture

Advanced Analytics | Analytics | Artificial Intelligence | Customer Intelligence | Data Visualization | Machine Learning
Suneel Grover 0
SAS Customer Intelligence 360: A look inside the black box of machine learning [Part 1]

As machine learning takes its place in numerous advances within the marketing ecosystem, the interpretability of these modernized algorithmic approaches grows in importance. According to my SAS peer Ilknur Kaynar Kabul: We are surrounded with applications powered by machine learning, and we’re personally affected by the decisions made by machines

Artificial Intelligence | Fraud & Security Intelligence | Machine Learning
John Maynard 0
Unasked fraud questions answered by AI

Artificial intelligence often seems misunderstood, especially in fraud. The same is true of machine learning. One of the amazing things about them is they ask the unasked questions. This occurs as artificial intelligence (AI) and machine learning (ML) go about their daily work. So, what is the unasked question? Too

Advanced Analytics | Analytics | Artificial Intelligence
Svein Tore Bø 0
Support, openness and flexibility: The momentum towards the analytics platform

Over the last few years, a quiet and gradual, but nonetheless important, evolution has been taking place. There has been a move from traditional business intelligence or analytics software towards the use of open platforms that underpin analytics activity, and can integrate customers’ own solutions, reducing reliance on proprietary software.

Analytics | Artificial Intelligence | Students & Educators
Andreas Becks 0
AI and the fear for your job: How an emotional debate can become a factual and constructive discussion

Will AI dramatically accelerate the division of our society into the “elite” and the “worried rest”? For example, will there be highly effective personalized medicine that only very few can afford? Will AI take over the automatable jobs of the middle class, while the highly qualified elite maintains or even

Artificial Intelligence | Customer Intelligence | Students & Educators
Mayra Pedraza 0
Data, models and accountability: AI education for marketers

Developments in artificial intelligence (AI) are expected to change the world of work across the board. We have already witnessed the impact on marketing communication endeavours and strategies. The ripples spreading across the water include ethical issues and questions of accountability. I caught up with Anabel Gutiérrez, Senior Lecturer in

Advanced Analytics | Analytics | Artificial Intelligence | Fraud & Security Intelligence
Pedro Felipe Cerón 0
Es el momento de combatir la corrupción con analítica

Las técnicas creadas a partir del Big Data han revelado múltiples aplicaciones que han servido para poner sobre la mesa los fraudes y las filtraciones masivas de información sobre temas relacionados con, por ejemplo, paraísos fiscales y evasión de impuestos. A Latinoamérica, según reportes divulgados por Global Financial Integrity, la

Analytics | Artificial Intelligence | Customer Intelligence
Gustavo Gutman 0
¿Cómo enfrentar la recesión a partir de los datos?

En situaciones donde la reducción de costos es un imperativo y las empresas carecen de presupuestos óptimos, los datos se vuelven aún más importantes de lo que eran antes de una recesión de datos. Priorizar libera resultados reales, y analizar la información de manera correcta se convierte en un punto clave. Determinar y definir qué clientes tienen mayor probabilidad

Advanced Analytics | Artificial Intelligence | Data Management
David Downing 0
How to rebuild citizen trust & unlock the power of AI

According to the Organisation for Economic Cooperation and Development (OECD), “service performance, citizen satisfaction and public trust are closely connected. Yet how can governments overcome citizens’ declining levels of trust in the way that their data is collected and used in order to improve service accessibility and quality? It’s not difficult

Analytics | Artificial Intelligence | Machine Learning
Rhett Scheel 0
Bühne frei für KI und Machine Learning im Gesundheitswesen!

Krankenversicherung und neue Technologien – geht das zusammen? Auf alle Fälle! Und das User-Group-Treffen „Analytik in der Krankenversicherung“, das kürzlich in Leipzig stattfand, hat es unter Beweis gestellt. Diese von den Gesundheitsforen Leipzig ausgerichtete Veranstaltung ist ein sehr informatives Forum, auf dem sich analytische Fachexperten aus der Gesetzlichen Krankenversicherung (GKV)

Analytics | Artificial Intelligence | Customer Intelligence
Pedro Felipe Cerón 0
Ciudades conectadas, el camino hacia ciudades inteligentes

En los últimos 25 años las ciudades colombianas han venido expandiendo su territorio y han aumentado su demanda de recursos naturales y servicios vitales. Esto lo sustentan las cifras del DANE que muestran que en 2017, 76% de la población colombiana se concentró en ciudades frente a un 24% que

Advanced Analytics | Artificial Intelligence
Olivier Zaech 0
Unterstützung statt Bedrohung: Wie KI das Gesundheitswesen verbessern kann

Fest steht: Künstliche Intelligenz (KI) wird unser aller Leben verändern – und tut es schon. Weniger klar ist, in welcher Weise und in welchem Zeitrahmen diese Veränderungen passieren – und was am Ende dabei herauskommt. In vielen Bereichen gibt es wilde Spekulationen. Bei Life Sciences und im Gesundheitssektor lichtet sich

Artificial Intelligence | Machine Learning | Programming Tips | Risk Management
Sian Roberts 0
Deep learning for numerical analysis explained

Deep learning (DL) is a subset of neural networks, which have been around since the 1960’s. Computing resources and the need for a lot of data during training were the crippling factor for neural networks. But with the growing availability of computing resources such as multi-core machines, graphics processing units

1 2 3 8

Back to Top