Education

Customer Intelligence | Students & Educators
Harry Clarke 0
The marketing best practices that drive student and financial value in higher education

In my previous post, “Why personalising the student experience is critical to higher education’s viability," we examined the role customer intelligence can play in driving value for universities and students across the higher education journey. Specifically, analytics has a vital role to play in helping decision makers, particularly marketers, to

Analytics | Data for Good | Students & Educators
Manuel Figallo 0
An unexpected weapon in the fight against the opioid epidemic: Graduate students

Each day, more than 130 Americans die from opioid overdoses. Combating the opioid epidemic begins with understanding it, and that begins with data. SAS recently partnered with graduate students from Carnegie Mellon University (CMU) 's Heinz College of Information Systems and Public Policy to understand how data mining and machine

Advanced Analytics | Analytics | Artificial Intelligence
Pedro Felipe Cerón 0
Tres tendencias que impactarán la industria del consumo masivo en 2019

La implacable búsqueda del consumidor para satisfacer sus necesidades impulsa cada cambio que vemos en el ámbito del consumo masivo. La desaparición de la empresa Toys R Us en Estados Unidos, el récord de la plataforma Alibaba consiguiendo ventas por US$25.000 millones diarios en 2018, la promesa de JD.com de

Analytics | Artificial Intelligence | Internet of Things | Machine Learning
Javier Alexander Rengifo 0
El análisis predictivo: impactando los negocios y sus procesos de transformación digital

La tecnología y la sociedad están evolucionando en un entorno digital que exige cambios en el modelo de negocio, la infraestructura y la cultura de una organización. Sin embargo, uno de los mayores retos a los que se están enfrentando las empresas en este momento se basa en el desconocimiento

Data Visualization | Learn SAS | Programming Tips
Sanjay Matange 0
The SGPIE Procedure - Part 2

The SAS 9.4M6 software includes a new SGPIE procedure (preproduction) as introduced in the recent article - The SGPIE Procedure.  In that article, I described the basic features of the two statements supported in the procedure, the PIE and the DONUT, with some examples. It is my humble opinion that

Students & Educators
データサイエンティストに求められる「本当の役割」とは

最近、SNSなどで「AI開発ミステリー ~そして誰も作らなかった~」という記事が話題になりました。人工知能(AI)を導入しようという企業の最悪の顛末をコミカルに描いたジョーク・ストーリーですが、これを面白がる人が多いというのは、多少なりとも日本のIT業界の現実を反映しているのかもしれません。 このような事態になっているのは、AIに対する過度な期待が原因の一つかもしれません。AIは、機械に任せれば素晴らしいことが起こる魔法ではなく、明確に定義されたタスクを実行するように機械をトレーニングする方法です。人間が行うタスクを機械が代替することになるのですが、人間が活動しているシステムのなかで、どの部分を機械にやらせるかを考え、実装し、運用しなければなりません。これは、これまでSASが実現してきたアナリティクスの延長にほかなりません。 「AIが発達すればデータサイエンティストはいらない」という説もあります。データサイエンティストが機械学習を実装する役割だけを持つのであれば、そうかもしれません。しかし、本当に必要とされる仕事が「人間が活動するシステムの中でのアナリティクスの活用」であるなら、まさにAIが使われる仕組みを考え、実装し、運用できる状態にする人材こそが求められているのではないでしょうか。 今年5月、SAS Forum Japan のなかで開催された「データサイエンティスト・キャリア・トラック」では、アナリティクスを活用する組織のなかでデータサイエンティストがどのように活躍するかについて、企業の方々から学生向けの講演をいただきました。例えば、ITや数理モデルを使いこなせることは初級レベルで、ビジネススキルを身に着けながら、最終的には経営幹部候補となるキャリアパスを提示している組織や、一方で、趣味で培ったスキルをビジネスに生かすデータサイエンティストがいます。このように、データサイエンティストのキャリアは組織・個人によってさまざまですので、多様人材がそれぞれの強みをもって活躍することができそうです。 しかし、どの組織・個人でも共通しているのは「目的志向」である点です。何のためにデータ分析をするのか、それがどのような価値を持つのかを明確にしなければ、課題解決のためのデータ分析はできません。データサイエンティストは単にデータ分析の技術で課題解決するだけでなく、「課題設定」をする役割を持たなければ本当の価値は生み出せないのです。そもためには、さまざまな問題意識を抱える人たちと異業種交流をするなど、幅広い視野が必要となりそうです。 データサイエンティスト協会が示した3つのスキルのうち、「ビジネススキル」については、ときどき「ドメイン知識」(業界や業務についての知識)として紹介されることがあります。しかし、本当に必要なのは、その知識を解決すべき課題に変換する力だと考えます。データサイエンティストを目指す学生が、すべての業界・業務についての知識を得ることは難しいですが、アナリティクスが活用される代表的な業界において、どんな課題がどのようにアナリティクスにより解決されているかを知ることで、応用力を身に着けられるのではないでしょうか。そこで、SAS Japanでは、次のような内容の学生向けセミナー「データサイエンティストのキャリアと活躍のかたち」をシリーズで開催します。 データサイエンティストのキャリア ... 「データサイエンティスト・キャリア・トラック」の講師陣による、それぞれの組織や個人としてのデータサイエンティストのキャリアや活躍のかたちを紹介 ビジネスで活用されるアナリティクス ... データサイエンスやアナリティクスがどのような業界のどんな課題を解決するために活用されているかをSAS社員が紹介 学生によるデータサイエンスの学び ... 学生がどのようにデータサイエンスを学習しているかを学生自身による体験を交えながら紹介 第1回は11月30日(金)に開催します。データサイエンティストを目指す学生の皆様のご参加をお待ちしています。

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning
Javier Alexander Rengifo 0
Capacidades y aplicaciones de la Inteligencia Artificial

En la actualidad, se ha masificado el uso de la Inteligencia Artificial (IA) en diferentes aplicaciones de negocio como: los servicios de atención al cliente y la toma de decisiones operativas en diferentes áreas de las empresas, consiguiendo optimizar múltiples procesos, al hacerlos más eficientes y logrando una mayor rentabilidad.

Analytics
Javier Alexander Rengifo 0
La realidad aumentada, potenciada con Analítica Avanzada, ofrece experiencias innovadoras para los nuevos consumidores

El internet de las cosas, las plataformas multimedia, la movilidad, la realidad virtual y aumentada, han adquirido mayor importancia en los últimos años, transformándose en vitrinas para vender y dar a conocer nuevos bienes y servicios. La realidad virtual y la realidad aumentada, son conceptos tecnológicos que, hasta hace poco,

Analytics
Pedro Felipe Cerón 0
Las TIC en Colombia de cara al nuevo Gobierno y el papel de la analítica avanzada en el desarrollo del sector

El Gobierno colombiano está alineado con los avances en el sector de tecnología y telecomunicaciones y ha sido enfático en ello, tanto así que en el encuentro más importante del sector en Colombia, Andicom, celebrado hace unas semanas, el nuevo gobierno señaló que era imperativo contar con políticas y acciones

1 2 3 9