Manufacturing

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning
Rubén Valdovinos 0
Modernización, un impulsor del cambio y la innovación en las empresas

Las organizaciones saben que modernizarse es una tarea continua y una condición para seguir compitiendo y creciendo en sus respectivos mercados. Cómo abordar el proceso de modernización, sin embargo, requiere una planeación minuciosa, y no está exento de desafíos. Más aún cuando involucra la adopción de tecnologías y procesos de

Analytics | Artificial Intelligence | Machine Learning
junhyukjeong 0
컴퓨터가 사물을 보는 방법, CNN 이론 - 1편

컴퓨터가 인간보다 잘 하는 몇 가지 분야가 있는데, 그 중 하나가 바로 이미지 인식입니다. 2012년 알렉스넷이 개발된 이후 컴퓨터 비전 분야는 급속도로 성장하여 우리 일상에 자연스럽게 스며들었습니다. 오늘 포스팅에서는 컴퓨터가 이미지를 어떻게 인식할 수 있는지 이론을 중심으로 살펴보도록 하겠습니다. 1. 컴퓨터 비전의 과거 우리가 모니터를 통해 바라보는 이미지의 구조부터 알아보겠습니다.

Analytics | Learn SAS
Catherine (Cat) Truxillo 0
5 claves para crear equipos de analítica más sólidos

Debido a la complejidad y cambios en el mercado, las organizaciones de todo el mundo están aprovechando las oportunidades para hacer mejores predicciones, identificar soluciones y dar pasos estratégicos y proactivos, lo que significa que dependen cada vez más de los big data. Sin embargo, en su búsqueda de resistencia

Internet of Things
Artur Szymanski 0
Internet Rzeczy – gdzie ta zapowiadana rewolucja?

O nadchodzącej rewolucji związanej z internetem rzeczy (IoT) pisze się dużo od wielu lat. Wiele już słyszeliśmy o zmianach w codziennym życiu i korzyściach dla nas wszystkich, które ta rewolucja ma ze sobą przynieść, ale wciąż nie widać zastosowań IoT na szeroką skalę. Największy rozgłos zyskały dotychczas inteligentne liczniki prądu/gazu,

Customer Intelligence | Machine Learning
Lyse Nogueira 0
Machine Learning: a chave na promoção da melhor experiência do cliente

No mundo hiperconectado em que vivemos, os consumidores podem ter múltiplas jornadas de compras, com interações por sites, aplicativos, redes sociais ou até mesmo por uma ligação telefônica. Apesar das muitas opções de canais de contato disponíveis, o mais relevante para o cliente é a qualidade e o nível de

Customer Intelligence
Carolina Pereira 0
Customer Intelligence: saiba como melhorar a comunicação com os clientes

Você já sabe o que é Customer Intelligence (CI)? Essa é uma prática no SAS na qual oferecemos soluções de negócios para gerar insights sobre os clientes, além de todo apoio no ciclo de aquisição, retenção e rentabilização, melhorando a experiência desses consumidores. Com a recente transformação digital do mercado

Advanced Analytics | Analytics
Jennifer Olson 0
3 ways AI and advanced analytics help manage the energy crisis in manufacturing

The need to use less energy is becoming critical to manufacturers worldwide. The transition to a clean energy economy drives new developments in the energy sector. Manufacturers must find ways to reduce energy use to stave off growing internal production costs and remain competitive. Let’s discuss why the global energy

Advanced Analytics | Analytics | Internet of Things | Machine Learning
Ernesto Cantu 0
Digital twins, simulaciones de la realidad en la que opera la industria de manufactura

La ciencia ficción ha utilizado la premisa de que existen universos paralelos en los que se viven realidades distintas, detonadas por decisiones o eventos excepcionales. En uno de ellos, los personajes estarían experimentando cosas únicas y distintas a las de otra dimensión que corre a la par. Los protagonistas de

Analytics | Innovation
Jessica Curtis 0
5 key questions to guide your connected factory strategy

Consumer goods manufacturers have faced significant challenges over the past few years due to rapidly changing demand and supply disruptions in their end-to-end supply chain. As a result, manufacturers have realized the need to strengthen their resilience and have prioritized assessing their manufacturing capacity to maximize output and automation. To

Analytics
Ernesto Cantu 0
Una ruta hacia la innovación para la industria de manufactura en el contexto de una nueva realidad

Como una constante en la industria de manufactura, la innovación ha sido esencial para el desarrollo de productos, la experimentación con prototipos, la materialización de ideas disruptivas, así como la modificación de procesos y la colaboración con un extenso ecosistema. Tradicionalmente, la innovación avanza en dos vertientes. Por un lado,

Advanced Analytics | Analytics | Artificial Intelligence
小林 泉 0
デジタルツインの話をする前にー将来を見通すために知っておくべき2種類の不確実性

近年、AI/アナリティクス市場に巨大ITベンダーが参入してきたことと、データサイエンティストがその存在感を高めようとしてきたことがあいまって、「予測」、「予測モデル」あるいは「AI予測」、「AIモデル」という言葉が、この市場で一般的になってきました。ビジネスにおいて、データ分析による洞察に基づいてよりよい意思決定と自動化を行うことーこれを「アナリティクス」と言いますーは、筆者がこの世界に足を踏み入れた20年以上前よりもっと前から、一部の「データを武器とする企業」において行われていました。それがより多くの企業に広まってきたということです。 今回は、より多くの方が「予測」について理解を深めてきているところで、その「予測」をもう少し深く理解し、近年の世界情勢において、大きく変化が求められている業界の1つである、流通小売業や製造業のサプライチェーン課題にフォーカスしたいと思います。まさにいま、サプライチェーンの大きな課題はレジリエンス強化です。そのための解決ソリューションとしてデジタルツインが注目されていますが、デジタルツインで何をすべきかを適切に見極めるために必要なおさらいとして、そもそも不確実性とは?について頭の中を整理したいと思います。 アナリティクスとは将来の不確実性に対して勇気を出して踏み出すーつまり行動するーことである。 「予測」という概念が広まることで、「予測」が確率的であるという認知も正しく広まってきました。需要予測値は確率的なものであるため、予測値そのものだけではなく安全在庫を計算するためにその確率を活用し、解約予兆、商品のレコメンデーションへの反応、不正検知、異常検知や歩留まりなど、アナリティクスつまり予測モデルを意思決定に適用するほとんどの意思決定は、すべて確率的なものです。よく見る予測モデル以外でも同様です。最適化も多くの場合その入力となる情報が確率的にばらついているケースが多いですし、近年、古典的な最適化手法が当てはまりずらいビジネス課題、例えばサプライチェーンの最適化、リアルタイムの配送スケジューリングなどの課題やカスタマージャーニーの最適化課題に対して適用される強化学習のアプローチにおいても、将来の報酬を確率的に計算して、目の前の一手を決めているといえます。 ここで唐突に余談ですが、リスクという言葉は日本語だとネガティブな意味に使われることが多いですが、本来はポジティブでもネガティブでもなく、単に確率的なバラツキを意味しています。なのでリスクを管理するということは、単に将来に対して確率的なバラツキを特定し意思決定の要因に組み込むということです。つまりこれはアナリティクスと同義です。なので、アナリティクスとアナリシスは語感は似ていますが、意味はだいぶ異なるということになります。 不確実性の1つは過去の経験から得られる確率 これは、上述した「リスク」です。どのような事象が起きたか?それが起こる確率はどれくらいか?そのインパクトはどの程度か?などについて過去の経験に基づいて洞察が得られるものです。例えば、輸送の遅れ、需要のバラツキ、ITシステムの障害、消費者の購買行動におけるバラツキ、設備などの停止、部品の故障率や製造品質などです。このような不確実性は過去のデータを分析することで予測可能です。このタイプの不確実性を今回は、「予測可能な不確実性」と呼ぶことにします。この「予測可能な不確実性」への対処に関しては、長年の経験から、多くのケースにおいて理論が確立してアナリティクスのベストプラクティスにすでに組み込まれています。 近年ニーズが増えてきたもう一つの不確実性への対応 こちらはずばり、過去に起きてないために予測することが困難な事象です。例えば、COVID-19、自然災害、特定地域での紛争や各国の政治情勢の変化などです。海洋の変化が予測とは大きく異なり漁獲高が計画と大きく乖離して輸出の計画が崩れて困っているという事例も該当します。特にサプライチェーン管理が必要な多くの企業は、近年特にこのような事象により、サプライチェーンが突如として混乱に見舞われるという経験をされているでしょう。このような不確実性は、過去に起きてない事象であっても、あらゆる情報を収集することで将来の起こる可能性についての洞察をある程度得ることができることもあります。ソーシャルメディアを分析することで、その国の経済の先行指標としての洞察を得たり、政治的な変化の予兆につなげるという活用方法も実際にされてきています。しかし、自社のサプライチェーンに関わる世界中のあらゆる状況に対して調べつくすということは、ほとんどの企業にとっては投資対効果的に見合わないと思います。したがって、サプライチェーンにおいては、そのような事象によって混乱した状態からなるべく早く回復するために、自社のサプライチェーンの脆弱性を理解し、起こりうるシナリオを想定して、それに備えることに投資の目を向けます。このようなタイプの不確実性を今回は、「予測困難な不確実性」と呼ぶことにします。 デジタルツインでは二つの不確実性への対応が価値をもたらす デジタルツインですが、そもそもビジネスをデータに基づいた意思決定にしている世界は部分的には47年前からデジタルツインだと言えます(ちょっと強引すぎますかね)。SASは1976年に穀物の収穫高の予測を電子的統計手法で行ったのがスタートです。ITの進化、IOT技術の進化に伴いより多くのデータが観測・収集できるようになり、ビジネスの一部だけでなくより全体がデータの世界で表現できる様になりました。近年ではそれを「デジタルツイン」と呼んでいます。サプライチェーンのデジタルツインを実現して、皆様はどんな課題を解決したいでしょうか?今回取り上げた「予測可能な不確実性」と「予測不可能な不確実性」を理解することで、デジタルツインを活用した「現実世界のよりよい理解」、「その理解に基づく意思決定」、「シナリオ分析」や「シミュレーション」を適切に行うことができるようになり、将来起こりうることに対して、よりよい対処が可能となるでしょう。 この話の続きが気になる方へ SASのデジタルツインの最新の取り組みについてはまずはこちらのプレスリリースをご覧ください。 また、デジタルツインやシミュレーションについて他のユースケースなどご興味ある方は、こちらのCosmo Tech社の(英語)もお役に立つと思います。    

Advanced Analytics | Analytics | Artificial Intelligence | Cloud
Héctor Cobo 0
Cinco tendencias tecnológicas para este 2023

A lo largo de 2022, el mundo siguió enfrentando un entorno cambiante dominado por altibajos económicos, una crisis energética provocada por un conflicto bélico, una cadena de suministro que se reinventa, y recuperándose de los estragos de una larga pandemia global. Al mismo tiempo, los cambios culturales, ambientales y la

Advanced Analytics | Analytics
José Mutis O. 0
Economías con mayor cultura analítica y apropiación de IA son las que más crecen en Latam

Está sucediendo en casi todas las regiones del mundo, y Latinoamérica no es la excepción: las economías que tienen una mayor cultura analítica y de adopción de inteligencia artificial son las que más están logrando crecer en la actualidad. Al comparar reportes de crecimiento de países del Fondo Monetario Internacional

Advanced Analytics | Analytics | Artificial Intelligence | Cloud | Learn SAS | Machine Learning | SAS Events
Charlie Chase 0
Solving 3 emerging challenges for retail and consumer goods supply chains

The landscape of supply chains has changed rapidly due to unforeseen disruptions.  These changes include supply chain bottlenecks, inflation and geopolitical activities across retail and consumer goods industries. Retail supply chains are under immense pressure to keep up with these rapid changes. Innovators have been quick to take advantage of

Advanced Analytics | Data Management
Sandra Hernandez 0
Data Dignity, un reto más para los CMO

En esta era de transformación digital de las industrias, la combinación entre marketing y tecnología (Martech) se ha convertido en una de las principales fuentes de conocimiento, inteligencia y posibilidades de engagement para las empresas. Estos beneficios han venido siendo impactados de diversas maneras configurando una fuerte tendencia en el

Advanced Analytics | Analytics | Cloud
Charlie Chase 0
6 advantages of using software as a service for demand planning

Getting demand right – or getting it wrong – can have a significant impact on customer perceptions of your brand, particularly in this age of instant gratification. The need for agile, accurate demand planning has never been greater. Predicting forward-looking demand signals and shifting consumer demand patterns to recommend balanced, profitable commercial

Analytics
製造業における DX と SQC

こんにちは、SAS Japan の西井です。本ブログにアクセス頂きありがとうございます。私は 2019 年に SAS に入社しましたが、それまでは国内の自動車部品メーカーにて様々な化学素材や工業部材の基礎研究・量産化開発に 10 年以上携わって来ました。SAS 入社後は、国内の製造業のお客様へ業務課題解決のためのデータ分析のソリューション(ソフトウェアやサービス)を提供する仕事に従事しています。今回はそれらの経験を通じて感じた事をタイトルのブログ記事として記しました。製造業での DX 推進の一つのヒントになれば幸いです。 背景 近年、製造業におけるデジタルトランスフォーメーション (DX) が大きな注目を集めています。DX とは一般的に、データやデジタル技術を活用して、業務プロセスを変革し競争優位を確保していくことと定義されています (参照 1) 。 製造業で DX が求められる背景には、ビジネス環境の変化による製品競争力低下への強い危機感があると考えています。日本の製造業はこれまで、各社のコア技術を元にした高度な品質を有する製品群によって、長期にわたり競争力を維持して来ました。しかし2000年代以降、新興国の参入やサプライチェーンのグローバル化など様々なビジネス環境の変化により、その優勢性に陰りが見えるようになりました (参照 2) 。競争優位の再構築に向けて、単独の製品性能による価値だけでなく、バリューチェーンを横断する形での付加価値創出、例えばロジスティックの最適化や顧客サービスの高度化など、いわゆるビジネスモデルの変革へ向けた施策が多くの企業で試みられるようになりました。その際、重要な要素の一つがデジタル技術の活用であり、DX の概念と重なったため、最近より強く注目されるようになって来たと認識しています。 本ブログのスコープ 弊社 SAS Japan は国内の製造業のお客様へ分析ソフトやサービスの提供を行い、業務課題の解決や高度化への変革、DX 推進のサポートを進めております。その中でしばしばお客様から、このような DX の総論を聞いても、実感がわかない、自分の業務とどう関連するのかわからないというご意見をしばしば頂くことがあります。特に競争優位の中核である品質管理に関わっている技術者の方々にとっては、製造データを用いた生産・品質管理活動はかねてから実施しており、今後どのような変化が必要で具体的に何に着手して良いか理解しかねていると感じています。今回、そのような現場技術者の方や企業の DX 推進担当者の方々を対象に、一つの切り口の例として、これまで品質管理手法として長らく活用され今も活躍している SQC (Statical Quality Control: 統計的品質管理) にフォーカスを当て、どのように DX へ組み込み発展させることが可能か、提言したいと思います。 SQC とは SQC は、QC七つ道具などの可視化手法 (管理図など、参照

Advanced Analytics | Analytics | Artificial Intelligence | Cloud
Charlie Chase 0
6 ways retailers can rebalance inventories as consumers shift spending

Consumers are pulling back and shifting their purchases in the wake of inflationary pressures caused by high prices for fuel, freight costs, consumer goods and nonessential products. Demand is shifting faster than many retailers and consumer goods companies anticipated. Inflation continues to rise forcing consumer spending to shift once again

1 2 3 12