Manufacturing

Advanced Analytics | Analytics | Artificial Intelligence | Cloud | Learn SAS | Machine Learning | SAS Events
Charlie Chase 0
Solving 3 emerging challenges for retail and consumer goods supply chains

The landscape of supply chains has changed rapidly due to unforeseen disruptions.  These changes include supply chain bottlenecks, inflation and geopolitical activities across retail and consumer goods industries. Retail supply chains are under immense pressure to keep up with these rapid changes. Innovators have been quick to take advantage of

Advanced Analytics | Data Management
Sandra Hernandez 0
Data Dignity, un reto más para los CMO

En esta era de transformación digital de las industrias, la combinación entre marketing y tecnología (Martech) se ha convertido en una de las principales fuentes de conocimiento, inteligencia y posibilidades de engagement para las empresas. Estos beneficios han venido siendo impactados de diversas maneras configurando una fuerte tendencia en el

Advanced Analytics | Analytics | Cloud
Charlie Chase 0
6 advantages of using software as a service for demand planning

Getting demand right – or getting it wrong – can have a significant impact on customer perceptions of your brand, particularly in this age of instant gratification. The need for agile, accurate demand planning has never been greater. Predicting forward-looking demand signals and shifting consumer demand patterns to recommend balanced, profitable commercial

Analytics
製造業における DX と SQC

こんにちは、SAS Japan の西井です。本ブログにアクセス頂きありがとうございます。私は 2019 年に SAS に入社しましたが、それまでは国内の自動車部品メーカーにて様々な化学素材や工業部材の基礎研究・量産化開発に 10 年以上携わって来ました。SAS 入社後は、国内の製造業のお客様へ業務課題解決のためのデータ分析のソリューション(ソフトウェアやサービス)を提供する仕事に従事しています。今回はそれらの経験を通じて感じた事をタイトルのブログ記事として記しました。製造業での DX 推進の一つのヒントになれば幸いです。 背景 近年、製造業におけるデジタルトランスフォーメーション (DX) が大きな注目を集めています。DX とは一般的に、データやデジタル技術を活用して、業務プロセスを変革し競争優位を確保していくことと定義されています (参照 1) 。 製造業で DX が求められる背景には、ビジネス環境の変化による製品競争力低下への強い危機感があると考えています。日本の製造業はこれまで、各社のコア技術を元にした高度な品質を有する製品群によって、長期にわたり競争力を維持して来ました。しかし2000年代以降、新興国の参入やサプライチェーンのグローバル化など様々なビジネス環境の変化により、その優勢性に陰りが見えるようになりました (参照 2) 。競争優位の再構築に向けて、単独の製品性能による価値だけでなく、バリューチェーンを横断する形での付加価値創出、例えばロジスティックの最適化や顧客サービスの高度化など、いわゆるビジネスモデルの変革へ向けた施策が多くの企業で試みられるようになりました。その際、重要な要素の一つがデジタル技術の活用であり、DX の概念と重なったため、最近より強く注目されるようになって来たと認識しています。 本ブログのスコープ 弊社 SAS Japan は国内の製造業のお客様へ分析ソフトやサービスの提供を行い、業務課題の解決や高度化への変革、DX 推進のサポートを進めております。その中でしばしばお客様から、このような DX の総論を聞いても、実感がわかない、自分の業務とどう関連するのかわからないというご意見をしばしば頂くことがあります。特に競争優位の中核である品質管理に関わっている技術者の方々にとっては、製造データを用いた生産・品質管理活動はかねてから実施しており、今後どのような変化が必要で具体的に何に着手して良いか理解しかねていると感じています。今回、そのような現場技術者の方や企業の DX 推進担当者の方々を対象に、一つの切り口の例として、これまで品質管理手法として長らく活用され今も活躍している SQC (Statical Quality Control: 統計的品質管理) にフォーカスを当て、どのように DX へ組み込み発展させることが可能か、提言したいと思います。 SQC とは SQC は、QC七つ道具などの可視化手法 (管理図など、参照

Advanced Analytics | Analytics | Artificial Intelligence | Cloud
Charlie Chase 0
6 ways retailers can rebalance inventories as consumers shift spending

Consumers are pulling back and shifting their purchases in the wake of inflationary pressures caused by high prices for fuel, freight costs, consumer goods and nonessential products. Demand is shifting faster than many retailers and consumer goods companies anticipated. Inflation continues to rise forcing consumer spending to shift once again

Analytics
0
電力平準化問題に対するSASのアプローチ(2)

はじめに 前回のブログでは、電力平準化問題が数理最適化のスケジューリング問題として扱えること、SASのCLP Procedureで簡単にモデリング可能であることを紹介しました。今回は具体的にサンプル問題でCLP Procedureの使い方を見ていきます(ブログ末尾にサンプルコード記載)。 CLP Procedureの使い方 ここではプロシジャの使い方を分かりやすく示すため、図1のような3タスク、2設備の簡略化された問題のスケジューリングを例として説明します。タスクの詳細な設定は表1の通りとします。   中身の詳しい説明に入る前に、一つだけ最適化の処理で理解しておくべき概念として、Resourceというものを紹介します。Resourceとはタスクを実行するために必要な何かしらの資源で、CLP Procedureによるスケジューリングでは「ある時間帯の使用電力がXである=電力という資源をX占有する」のように読み替えることがポイントです。図1を例にとると、全体のResourceとしては電力設備M1とM2が1つずつ、電力は設定した電力上限分が用意されており、タスクA実行中は電力設備M1というResourceを1つ、電力というResourceを電力波形で表される分だけ各時間で占有する、と見なすことができます。最終的に実行可能なスケジュール(同じ時間帯に複数のタスクが同じ設備で実行されない、電力上限を超過しない)を作成することは、各タスクが上限の範囲内で上手くResourceを分け合うような割り当てを作成することに置き換えられます。 では、実際にSASコードでCLP Procedureを呼び出してスケジューリングを行う部分ですが、必要なのは以下のコードだけです。 proc clp actdata=act resdata=res schedtime=outtime schedres=outres; run; “schedtime”と”schedres”は出力先データセットの指定なので、ユーザーが用意する必要があるのは入力データの”actdata”と”resdata”のみです。では、それぞれのデータセットの内容を確認してみましょう。 “resdata”ではResourceの設定を行います。上での説明の通り、電力設備M1とM2が1つずつで、使用可能な電力総量の上限が“12”であることを表現しており非常に簡潔な設定です。 “actdata”はスケジューリングの対象となる最小要素であるActivityの設定を行います。今回の例では、タスクを図1のように分割したフェーズそれぞれを一つのActivityと考えます。こちらのデータセットは様々な要素が一行に並んでいるのでやや複雑ですが、設定項目は大まかに5種類の系統に分かれます。 まず_ACTIVITY_列では、各Activityにそれぞれ固有のIDを設定します。タスクAを例にとると、各フェーズの電力使用に当たるA01~A05と、タスク全体として設備M1を使用することを表すA00を設定しています。今回の問題では「設備M1を使用している間電力を使用する」という前提なので、A00の_DURATION_とA01~A05の合計が一致していることが確認できます。問題によっては「待ち時間などで使用電力0だが設備は占有したまま」のような状況で、両者の_DURATION_が異なる設定もあり得ます。 _SUCCESSOR_は前後関係を設定する対象のActivityを示しており、前後関係の種類と程度は_LAG_と_LAGDUR_で指定します。例えばFSは、「当該ActivityのFinishと_SUCCESSOR_で指定するActivityのStartの差が_LAGDUR_で指定する値以上」を示しています。今回の例では一つのタスクを分割したフェーズに相当するActivityは常に間を空けることなく実行されるため、_LAG_=FSE(FinishとStartが_LAGDUR_にEqual)、_LAGDUR_=0と設定しています。6行目のように、「タスクAの後3時間単位空けてタスクBを開始する」という業務的な意味での前後関係を表すのにも使用できます。また1行目のA00では、_LAG_=SSE(StartとStartが_LAGDUR_にEqual)でA01と開始が一致するように設定されていることにも注意が必要です。設定の詳細はマニュアルをご覧ください。 _ALIGNDATE_と_ALIGNTYPE_の組み合わせは_SUCCESSOR_と_LAG_の関係に似ていて、当該Activityと_ALIGNDATE_で指定した期日の間に_ALIGNTYPE_で指定する前後関係を設定します。例えば作業に着手可能になる時期や納期を表すのに使用でき、12行目では_ALIGNTYPE_=FEQ(Finishが_ALIGNDATE_=24にEqual)で「タスクB(のフェーズ5)が時刻24丁度に終了すること」を指定しています。 この設定でCLP Procedureを実行すると以下のような結果が得られ、時間に関する結果の”schedtime”とResourceに関する結果の”schedres”が出力されます。”schedtime”は各Activityをどの時間枠に割り当てるかという関心のある結果そのもの、”schedres”には例えば(今回の問題とは異なり)タスクを実行する設備にも選択肢がある場合のResourceの割り当てが出力されています。 最後に少しデータの加工が必要ですが、以下のようにガントチャートや電力波形に可視化して、諸々の条件が満たされたスケジュールになっていることが確認できます。図2 では"resdata"(表2)で指定した、「使用可能な電力総量の上限が“12”」を下回っていることが確認できます。 なお前回も記載しましたが、「ピーク値をどこまで下げることができるか?」を知りたい場合は、「使用可能な電力総量の上限」の指定値を下げて計算し、その条件を満たすスケジュールが作成可能かを調べることで下限を得ることができます。 まとめ 本ブログでは電力平準化問題を例として、CLP Procedureの使い方を見てきました。手順の中心となる入力データ準備の部分は、他のプログラミング言語で用意したものを読み込ませても良いですし、規模が小さければExcel上で作成してしまうことも可能です。SAS言語の知識も最適化の知識も最小限で、便利にスケジューリング機能が使えると感じていただけたなら幸いです。(反響があれば、設備の割り当ても考える場合など、より高度なモデリング方法についても取り上げます) サンプルコード 入力データは全てdataステップで作成しています。ganttプロシジャはclpプロシジャの結果である"schedtime"をほとんどそのまま使用できます(今回はグループ化の処理だけ追加しています)。使用電力の棒グラフについては、今回説明していないデータ加工が多少必要になるため、ソースコードからは割愛しています。 data res; input _RESOURCE_ $ _CAPACITY_; datalines; M1 1 M2 1 El 12 ;  

Analytics
0
電力平準化問題に対するSASのアプローチ(1)

はじめに 2022年も半ばを過ぎましたが、今年は何かと電力需給関係の話題を耳にすることが多くなっています。まず3月下旬には、直前に発生した福島県沖地震の影響で火力発電所が停止したことと寒波が重なり、東京電力と東北電力の管内で電力需給ひっ迫警報(予備率3%以下)が発令されました。そして6月下旬にも想定外の猛暑により、東京電力管内で電力需給ひっ迫注意報(予備率5%以下)が発令されています。事業者の皆様にとっても、政府からの節電要請など対応の必要な課題の一つではないでしょうか。 さて、本ブログでは製造業のスケジューリングを例にとって、使用電力の平準化(ピーク時間帯をシフトする、またピークそのものを下げる)問題に対するSASのアプローチをご紹介します。そもそも一般的なスケジューリング問題は数理最適化問題として扱えることが知られていますが、電力平準化問題も同様の枠組みで解決可能です。数理最適化によるスケジューリングは事例も豊富で歴史もある分野なのですが、通常の最適化エンジンを使用したスケジューリング問題のモデリングには背景にある数理最適化の理解が必要不可欠で、経験の無い方にとっては中々手を出しにくい代物というのが実情です。一方SAS Optimization(またはSAS/OR)にはスケジューリング問題専用の機能があり、CLP Procedureにフォーマットに従ったデータを与えるだけで、ほとんど数理最適化の理論を意識することなく簡単にモデリングすることができます。SASにはあまり最適化のイメージは無いかもしれませんが、本ブログをきっかけに意外と便利な機能が揃っていることを知っていただけたら幸いです。 問題設定 本ブログのスケジューリングで対象にするタスクとは、製造業における一連の生産プロセスのように、一度開始すると所定時間まで途中で中断することのできない作業のまとまりを指し、その間継続的に電力を使用するものとします(タスクごとに使用電力の推移がどうなるかは、過去の実績や予測としてデータ化されている必要があります)。 そして「使用電力を平準化する」とは、非常に単純に表現すると図1のように、使用電力の大きいタスクの時間的重なりをできるだけ解消してピークを下げることです。もちろん現実の問題では、設備の数や納期など様々な制約が存在するので、それらを考慮したスケジュールを作成する必要があります。 では次に、スケジューリング問題として扱いやすくするため現実の問題に対して行う、二つの側面からの近似を説明します。一つ目は時間軸に関する近似で、最小の時間単位を決めてその単位に粒度を丸めます。例えば30分単位で1日分のスケジュールを立てる場合、各タスクの所要時間も30分単位に切り上げて丸めて、「1日分48個の時間枠のどこからどこに割り当てるか」という処理を行うようにします。もう一つは電力波形に関する近似で、もとの波形を階段状に近似します。階段状の近似では、実際の電力波形の傾向が変わるなどキリの良い時点で分割して(フェーズに分割)、各フェーズの使用電力は常に期間中の最大値と同じとみなすような近似を行います。30分単位のスケジューリングを行う場合は、フェーズの所要時間も30分単位になるよう切り分けます。ここでは実際の電力波形を四角いブロックで覆うように近似していますが、もとの波形から多めに余裕を見て使用電力を設定している状況に該当しますので、このシミュレーションで電力ピークを削減できれば、実際にはもっと大きく削減できる可能性があるということになります。「時間軸はどれくらい細かく設定するか」や「タスクを何フェーズに分割するか」は、最終的なスケジュールの精度に影響しますので、問題の設定者が処理時間(細かくすればするほど計算の処理時間は伸びる)との兼ね合いで決定していく要素になります。電力に限定すると、電力会社の集計が30分単位なので、30分単位のスケジューリングには妥当性があります。 このような設定のタスクが複数存在してそれぞれのタスクを実行可能な設備が決まっている場合に、「各タスクをいつ開始するか」を上手く調節して、使用電力合計のピークが所定の上限を超えないようなスケジュールを作成することが今回の目的です。 本手法で行うのは与えた使用電力の上限を超えないスケジュールを作成することなので、いくらまでピーク値を下げられるかは自動的には求められません。通常は業務的に意味のある目標値を指定しますが、「ピーク値をどこまで下げることができるか?」を知りたい場合は、電力上限の指定値を変えて複数回実行することで求められます。指定値が厳しすぎて実行可能なスケジュールが無い場合は解なしと出るので、そこに至るまで少しずつ指定値を下げて再実行する、もしくはそのような処理を自動で行うシステムを実装します。 以下はある程度複雑な問題(30分単位1週間分、10設備、20タスク、上限10kW)を解いた時の結果イメージです。弊社では実際のプロジェクトでも使用電力平準化の問題に取り組んだ事例があり、階段状近似によって実際より各タスクの使用電力を過大評価している分を加味しても、最適化によって作成したスケジュールの方が実績よりピークが低くなることを示せました。 次回はサンプル問題でCLP Procedureの使い方を詳しく説明します! まとめ 最後に電力平準化問題のビジネスインパクトについてですが、この問題で行っているのは使用電力のピーク値の削減で、使用量そのものを削減している訳ではない(合計すると同じ)ことに注意が必要です。電力会社との契約はピーク値に基づいて決まるため、それを小さくすることができれば一定のコスト削減効果はあります。また契約によっては時間帯によって料金が異なるため、高い時間帯からピークをずらせればその分だけのコスト削減も見込めます。ただし事業規模にもよりますが、この両者を総合しても、電力平準化だけで十分な投資対効果を得るのは難しい可能性もあります。一方、節電要請への対応はコストだけに還元できない社会的意義もあり、今後のディマンドレスポンス進展や、既に今冬にも予想されている電力ひっ迫への対応など、昨今の不安定な情勢へのBCPの一つとして十分に検討に値するテーマであるとも考えています。また同じような考え方で、より利益に直結するスケジューリングを検討することも可能です。 SASでは既存のユーザー様に対するライセンス追加や活用方法のアドバイス、既存・新規関わらずドメイン知識の豊富なコンサルタントによるプロジェクト化の支援など幅広く受け付けておりますので、ご興味を持たれた方は是非ご連絡ください。

Advanced Analytics | Artificial Intelligence | Data Visualization | Machine Learning
Jessica Curtis 0
How to cultivate trust in analytical models and improve forecast adoption

Often the biggest challenge when implementing a successful forecasting process has nothing to do with the analytics. Forecast adoption – incorporating forecasts into decision-making – is just as high a hurdle to overcome as the models themselves. Forecasting is more than analytical models Developing a forecasting process typically begins with

Advanced Analytics | Analytics | Data Management | Data Visualization
Ernesto Cantu 0
Acelerando un futuro analítico para manufactura en América Latina

A medida que nos acercamos a un nuevo año, los temas de productividad y optimización para operar en un  contexto volátil e incierto seguirán siendo una prioridad para los ejecutivos de todos los sectores de la industria, y manufactura no es la excepción. Los datos son un aliado importante para garantizar la resiliencia

Analytics | Machine Learning
Charlie Chase 0
How life science and health care supply chains can adapt to disruption

Robert Handfield, PhD, is a distinguished professor of Supply Chain Management at North Carolina State University and Director of the Supply Chain Resource Cooperative. In an episode of the Health Pulse Podcast, Handfield gave his views regarding the challenges health care and life science companies have encountered over the past two years

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (6) – センサデータの品質を向上させる7つのポイント(後編)

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) と Operational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 記事の振り返り: 自覚症状が無いセンサデータの品質問題 これまで「自覚症状が無いセンサデータの品質問題」をテーマとし、「センサデータの品質を向上させる7つのポイント」について(前編)と(中編)の2回に分けてお話ししました。生産ラインのDXのために、センサデータを用いてデータ分析をしているのだが、思うような結果が得られていないケースが市場で発生していることをお伝えし、その原因の一つとして、分析対象となるセンサデータ自体の品質問題があることをお伝えしました。この問題は関係者が気付きにくく、対処方法も専門知識と経験が必要となります。 今回の後編では下記の⑥~⑦について御説明します。  図1. センサデータの品質を向上させる7つのポイント ⑥データレイクに蓄積すべきデータの選択(特徴量抽出) これまでの記事で、課題解決にマッチした高品質なセンサデータを収集することが重要だと述べてきましたが、他にも重要なポイントがあります。データレイクに蓄積すべきデータをどのように選択するのかが、昨今、課題となっています。  理由としては、AIモデル開発と更新のために、ある程度の生データ保存が必要となるからです。 この問題は、PoC段階では大きな問題になりません。PoCと称して大量にデータを取って専門の担当者が解析するからです。問題はPoC後の現場での運用です。 図2. 関連データ/センサ/特徴量の戦略的選択  それはなぜでしょうか? 各種センサが作り出すデータ量は非常に大きく、センサによっては毎分1 GB 以上のデータを生成してしまい、通信ネットワークの負荷の問題や、クラウド上でのデータ保存のコストといった現実的な問題が見えてくるためです。 例えば、図1の右側の表に示すように、サーモグラフィは動画像のため、1分間で1GB以上のデータを生成します。この場合、従量課金/ネットワークトラフィック減への対応が必要となります。温度センサ等のデータ量は、数個であれば小容量ですが、数百個もセンサを使用するケースですと、1分間に数MBにもなります。このようなデータをクラウドへ転送し続ける必要があるのでしょうか? また、高額なセンサを減らすために、できるだけセンサの数を絞りたいという要望も出てきます。これがいわゆるデータ選択(特徴量抽出)をどうたらいのかという課題の本質であり、データ分析上、特徴量の選定が重要だという理由とは異なります。では一体、どんなデータが本当に必要なのか、またデータ量を減らす時にどのような形でエッジコンピューティングを活用すべきなのでしょうか? この技術的な見解は、今後、ブログにて紹介させて頂きたいと思っておりますが、ITとOTの両方の視点から検討する必要があります。 キーワードとしてはプロ同士の意見交換です。 ⑦プロ同士の意見交換が鍵となる ここまで、センサデータの品質がデータ分析に与える影響について、データ分析企業の視点で述べてきましたが、どの注意点も専門知識と経験を要するものばかりです。つまり、成功の鍵は、プロ同士の意見交換だと言えます(図3)。もしくは「業界を超えたコラボレーションの必要性」、「ITとOTとの融合が鍵になる」と表現しても良いかもしれません。 特に現場の熟練者との協業は必須となります。現場の熟練者から伺いたい事としては、測定対象物の詳細、製造プロセスや作業工程、異常状態の詳細、また、どういうメカニズムで異常が起こるのか情報交換させて頂くことが重要です。そして、それがどれだけ困ることなのかをプロジェクトチーム内で意見交換をして頂くことが重要だと言えます。そして、センサデータ収集からデータ分析までを広く見渡した上で、AIを用いたセンサデータ分析システムを構築していくことが成功への近道だと筆者は考えています。難しく感じられる方もおられると思いますが、このプロ同士の意見交換に関しては、日本人エンジニアが得意とする高度な擦り合わせ文化が活かせると信じております。 図3. プロ同士の意見交換が大事  以上、センサデータの品質を向上させる7つのポイントを、3回に分けて紹介致しました。気になる点がございましたら、弊社までお問い合わせ下さい! 前回のブログ

Analytics | Customer Intelligence | Data Visualization | Marketing
Charlie Chase 0
How CDP technologies offer sales and marketing teams powerful insights

In today's environment, data is exceedingly important but also increasingly harder to get and manage. A reliable customer data platform (CDP) can provide significant value to retail and consumer packaged goods (CPG) companies. Customer data platforms are used to consolidate and integrate customer and consumer data into a single data source. CDP

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (5) – センサデータの品質を向上させる7つのポイント(中編)

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) と Operational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 記事の振り返り: 自覚症状が無いセンサデータの品質問題  これまで「自覚症状が無いセンサデータの品質問題」をテーマとし、前回は「センサデータの品質を向上させる7つのポイント(前編)」についてお話ししました。生産ラインのDXのために、センサデータを用いてデータ分析をしているのだが、思うような結果が得られていないケースが市場で発生していることをお伝えし、その原因の一つとして、分析対象となるセンサデータ自体の品質問題があることをお伝えしました。 この問題は関係者が気付きにくく、対処方法も専門知識と経験が必要となります。 そこで、「センサデータの品質を向上させる7つのポイント」について、今回の中編では下記の④~⑤まで御説明します。  図1. センサデータの品質を向上させる7つのポイント ④センサの設置方法  センサは種類に応じて必ずメーカが推奨する設置方法が決められています。図2は圧電型加速度センサの設置方法と注意点であり、加速度センサメーカから提供されている一般的な公開情報です。重要なのは、設置方法によっては必要なデータが得られないことです。例えば、計測可能な上限周波数は、プローブだと1 kHzが限界ですが、ネジ留めだと15 kHz近くまで測れます。これも筆者が経験した事例ですが、ユーザ様が自己流で両面テープを用いて加速度センサを貼り付けておられたために、振動が吸収されてしまい、正確な計測ができていなかったことがありました。これはさすがに、高度なデータ分析を実施する以前の問題でしたので、すぐに改善をお願いしました。 図2.  加速度センサの設置ミスによる振動データのロスト   ⑤データ収集装置の選定  データ収集装置自体の性能不足が問題になることがあります。これは盲点であり、自覚症状が出にくいものです。たとえ高精度なセンサを設置してデータ収集したとしても、適切なデータ収集装置を選定しなかったために、データの精度を低下させてしまうケースがあります。特に重要なのは、サンプリング周波数、分解能、同期計測の3つです(図3)。 図3. 適切な計測装置の使用が不可欠  サンプリング周波数に関しては、計測器の選定基準の一つとして必ずカタログ等に記載されており、また、近年はサンプリング周波数が不足しているデータ収集装置は稀なため、選定ミスの原因にはなりにくくなっています。しかし、分解能に関しては注意が必要です。例えば、加速度センサやマイクロフォンを用いた計測では、 24 bit分解能のデータ収集装置を使用するのが業界標準だが、16 bit分解能の装置を使用しているケースがあります(一般的なオシロスコープは8 bit分解能)。この場合、計測データに与える影響としては、波形再現性の悪化と微少な変化の取りこぼしが発生します。仮に機械学習を用いて異常検出をするとしたら、感度不足が起こる可能性があります(表1)。  表1. センサ計測ミスの原因とデータ分析に与える影響    極めて重要であるにもかかわらず、ほとんど意識されていないのが、同期計測です。各種センサデータ同士の時間的タイミングが取れていない場合は、厳密なデータ分析ができない場合があるからです。例えば、周期性のある回転機械や往復運動機械の異常検知を行う場合には、各種信号の立ち上がりタイミングや信号の発生サイクルが異常検知上、大きな意味を持つため、同期が取れていないデータでは異常検出が困難な場合あります(図4)。厳密には、計測装置の同期精度が、実施したいデータ分析用途に合っているかどうか判断する必要があります。高速動作をする精密機械の状態監視では、マイクロ秒レベルの同期精度が要求される場合もあり、一般的な工作機械ではミリ秒レベルで十分な場合があります。 図4.同期計測の重要性 データ収集装置の選定ミスにより、不具合の発見ができなかったという事例を、筆者は数件経験しています。例えば、高速印刷機の印刷ズレの原因分析に携わった時のことです。原因はベアリングのわずかな損傷で、それが原因で印刷ズレが発生していました。ですが、お客様のお持ちのデータ収集装置は、サンプリング周波数と分解能が低く、異常波形が検出できておりませんでした。そのため、筆者が持ち込んだデータ収集装置を使い原因分析は成功しました。加速度センサは最高のものでしたが、それを活かしきれるデータ収集装置の選定に問題があったという事例でした。 これまでの記事で、センサデータの品質を向上させる7つのポイントのうち5つを紹介してきました。 残り2つのポイントは、後編にて御説明します。 前回のブログ  次回に続く

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (4) – センサデータの品質を向上させる7つのポイント(前編)

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) と Operational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 前回の振り返り: 結果が出ないPoC(Proof of Concept:概念実証)  前回の記事では「自覚症状が無いセンサデータの品質問題」についてお話ししました。生産ラインのDXのために、センサデータを用いてデータ分析をしているのだが、思うような結果が得られていないというケースが市場で発生していることをお伝えし、その原因の一つとして、分析対象となるセンサデータ自体の品質問題があることをお伝えしました。 この問題は関係者の自覚症状もないため気付きにくく、対処方法も専門知識と経験が必要となります。 そこで、今回から前編/中編/後編の3回に分けて、「センサデータの品質を向上させる7つのポイント」について御説明します。 センサデータの品質を向上させる7つのポイント  現場では正確なセンサデータ収集(計測)を行っているつもりでも、気付かずに失敗しているケースが数多く存在していることに注意して頂きたいです。これは、計測ミスしたデータをいくら解析しても、良い結果は得られないからです。このような計測ミスを防ぐためのポイントは以下の7つだと言えます。 ※本記事では、上記の①~③まで御説明します。 ① 異常状態の発生メカニズムの理解(測定対象物の理解) この異常状態の発生メカニズムの理解は、測定対象物の理解を深めることだと言い換えることもできます。 いくつか例をあげてみます。ポンプのような回転機械の軸受けの不具合は異常振動として現れ、その結果として異音が発生します。また、音響機器はスピーカの取り付け不具合により、ビビリ音という異音が現れます。そして、プレス機のような往復運動機械の場合は、往復周期がぶれることにより、生産品の加工精度にバラツキが生じることがあります。さらに、射出成形機の場合は、材料の注入圧力の時間的変化にバラツキが生じた場合にうまく成形できない場合があります。 このように、測定対象物の異常状態が、なぜ起きるのかを物理的な観点から把握することが第1ステップとなります。 ところがこれが意外と難しいため、解決策としては、異常状態を把握している可能性の高い、現場の熟練オペレータなどからの情報収集が重要になります。 ② センサの選択(取得データの選定) よくあるミスとしては、センサの選択ミス、いわゆる取得データの選定ミスがあげられます。原因の一つは、上述の「①異常状態の発生メカニズム」が事前に理解できておらず、適切なセンサ選定ができなかったことに起因しています。例えば、回転機械の軸受けの不具合は異常振動として現れるため、異常検知のためには加速度センサを用いて振動データを取得することがベストだと言えます。また、音響機器のスピーカの取り付け不具合によるビビリ音の検出にはマイクロフォンを用いた音響計測が適切だと考えられます。 実はセンサ選定が不要な場合もあります。例えば、機械の制御信号が外部出力されているようであれば、そのままデータ収集することも可能です。 他にも原因があります。それは、システム構築を担当しているシステムインテグレータ(SIer)の得意分野が影響しているケースがあります。実際、SIerが得意としていないセンサは選定候補に上がってこないケースがあります。表1は、状態監視のために使用される代表的なセンサをまとめたものです。センサの種類によっては専門メーカや専門のSIerがいるものもあり、中には高性能な計測器が必要とされるセンサもあります。これは筆者が経験したことですが、製造装置の状態監視の際に、電流を使った異常検知の方が適切だと思われるケースがありました。ですがそこでは加速度センサが使用されていました。理由は業者が得意とするセンサ計測領域に偏りがあったことと、特に明確な理由がないまま、加速度センサが選択されていた状況でした。無論、生データには異常信号が弱く含まれており、データ分析をしても良い結果が得られていませんでした。そのため、筆者はセンサの変更を進言しました。 表1.状態監視に使用される代表的なセンサ ③ センサの取付け位置 センサの取付け位置も重要です。例として生産品の品質管理と製造装置の異常検知の例をあげてみます。機械はローラ機械である。図1左側の写真は、加速度センサを用いた軸受けのモニタリングであり、X、Y、Z軸に加速度センサが取り付けられている。この例は正しく設置されている例である。  医者の診断に例えれば、心臓の診断のために心音を聴こうとする医者は、どこに聴診器をあてるでしょうか? もちろん胸ですよね? 足に聴診器をあてて心音を聴こうとするお医者様がいたらかなり心配になりますよね? このような、あり得ない状況がセンサの取付け位置のミスとして起こっている場合があります。このような事態を防ぐには、「なぜそのセンサを設置するのですか?」とSIerに質問するなり、自問自答してみると良いと思います。また、「設置するセンサの数、取り付け方向はどうすべきか?」という問いに関しても明確な理由を持っておきたいですね。             図1.生産品の品質管理と製造装置の異常検知(ローラ機械の例) 以上、センサデータの品質を向上させる7つのポイントのうち3つを紹介しました。 次回は、④~⑤について御紹介します。 前回のブログ  次回に続く

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (3) – 自覚症状が無いセンサデータの品質問題

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) と Operational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 今回から、「自覚症状が無いセンサデータの品質問題」に関連した話題をお伝えしていきます。  結果が出ないPoC(Proof of Concept:概念実証)  SASは世界各国に支社を持ち、製造業DXの実現に向けた数多くのデータ分析案件を取り扱っています。 よく頂く御相談内容としては、生産品の品質管理と設備保全系に関連するデータ分析システムの導入検討です。(図1)    図1. 生産ライン向けDXとしてよくある御相談   ところが、PoCとしてセンサデータを用いてデータ分析をしているが、思うような結果が得られていないというケースが市場で発生しています。多くの方がデータ分析手法に問題があるのではないかと考え、データ分析のスペシャリストである弊社に御連絡を頂きます。たしかに分析手法の問題もあり、原因は様々ですが、意外と盲点になっているのが分析対象となるセンサデータ自体の品質問題です。  センサデータの品質問題とは何か?  データ分析はデータ収集から始まります。そして、そのデータの質が分析結果に影響を与えることは容易に想像できます。図2はセンサデータ分析システムの構築の流れを示しています。システム構築は、データ収集からスタートし、データ蓄積、そしてデータ分析という順番で実施され、手動でデータ分析の結果が出るようになった段階で自動化するという流れが一般的です。  図2. センサデータ分析システムの構築の流れ   図3は、センサデータの分析の際にAIの導入を意識して描いたものです。流れとしては、経営上の目標設定から始まり、データ取得、特徴量抽出/次元削減、そしてモデル作成へと進んでいきます。ここで皆様に質問させて頂きたいのは、どの工程が一番重要なのかということです。無論、どの工程も専門家の知見が必要であり、重要かつ難易度が高いのは当然ですが、最も重要なのは前半のデータ取得と特徴量抽出だと、あえて強調します。言い換えますと、モデル作成に使用されるセンサデータの品質(精度)が重要だということです。当然ではありますが、センサデータの質が悪い場合、データ分析(作成するモデルの精度)に影響が出てしまうためです。 医者の診断に例えれば、検査データが間違っていたら間違った診断を下してしまうのと一緒であり、センサデータの品質は極めて重要だと言えます。  図3. AIを用いたセンサデータ分析システムの開発の流れ 自覚症状が無いセンサデータの品質問題  この問題の恐ろしい点は、システム開発に携わっている関係者の皆様にとって自覚症状が表れない場合が多いことです。 そもそも、データ分析の結果が出ない原因が、上述のセンサデータの質に関係していることを、どうやって判断すれば良いのでしょうか? 当然、他の原因も考えられます。   先日、お医者様と健康診断の検査結果のお話をした際に気がついたのですが、お医者様は検査データの意味や限界、誤差要因をよく御存知のようでした。そして総合的に私の健康状態を判断しておられるようでした。思わず、その秘密を知りたいと思い質問してしまったのですが、お医者様の回答は「過去の事例と経験即かなぁ~~??」と、お答えいただきました。  ということで、次回以降、私の経験即に基づいたチェックポイントを御紹介していきます。  前回のブログ  次回に続く

Advanced Analytics | Analytics | Data Visualization
Carlos Pinheiro 0
Vehicle Routing Problem - A beer distribution example in Asheville

The Vehicle Routing Problem (VRP) algorithm aims to find optimal routes for one or multiple vehicles visiting a set of locations and delivering a specific amount of goods demanded by these locations. Problems related to the distribution of goods, normally between warehouses and customers or stores, are generally considered vehicle routing problems. For this article's example, let’s consider a real (and awesome) brewery that needs to deliver beer kegs to different bars and restaurants throughout multiple locations.

Advanced Analytics | Analytics | Data Management | Data Visualization
Charlie Chase 0
Misnomers regarding outliers and their usefulness in statistical modeling

Outliers provide much-needed insights into the actual relationships that influence the demand for products in the marketplace. They are particularly useful when modeling consumer behavior where abnormalities are common occurrences or unforeseen disruptions that impact consumer demand. But why do demand planners cleanse out outliers, when many are not really

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (2) - 生産ラインにおけるAIを用いた状態監視の種類

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。 そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) と Operational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 はい、今回は、「生産ラインにおけるAIを用いた状態監視の種類」について解説します。 図1に示した通り、種類としては4つに大別されます。 どれを実現したいのかで、取得すべきセンサデータの種類や、データ分析システムの構築難易度が変わってきます。 読者の皆様は、どれを実現したいとお考えでしょうか? 図1.生産ラインにおけるAIを用いた状態監視の種類は4つある 1つ目が異常検知です  これは生産品の品質異常や生産ラインの設備機械の異常を捉えるものであり、学術的には「教師なし学習」と呼ばれる手法を用います。この場合、異常時のデータを予め用意する必要がないため、不具合データの取得が困難な製造業の現場において有効となります。例えば、正常時の各種センサデータを基準とし、どれだけ正常状態から離れたかで、異常を検出する方法です。 2つ目は原因診断です これは異常発生後に、何が原因なのか特定するものであり、学術的には「教師あり学習」と呼ばれる手法を用います。この場合、異常時のデータを予め用意しておく必要があります。 原因診断が必要とされる理由としては、対処方法の検討をつけるためです。 製造装置であれば、点検箇所や分解すべき箇所を特定することにより、分解コストや部品交換コストを抑えることができます。 これは大型機械の場合、特に重要であり、この原因診断は「精密診断」とも呼ばれ、まさに職人技が要求される分野です。 3つ目が品質/寿命予測です これは各種データから、生産品の品質を予測したり、稼働中の設備や部品が、あとどれくらい使用できるか日数を予測するものです。 例えば、生産品の品質予測が可能になると、抜き取り検査の精度が向上し、ランダムにサンプル取得をするのではなく、品質上懸念がありそうなものをサンプルして効率良く評価できるようになります。 また、設備や部品の寿命予測が可能になれば、高額な部品をできるだけ長く使用することができますし、メンテナンス日程を戦略的に決めることも可能になります。 4つ目がパラメータ最適化です これは、期待した品質で生産するためには、どのような製造環境や材料構成が必要なのか、また、どのように製造装置を制御したらよいのか決定することができます。 図1に示したデータ活用の流れは、人間の健康診断と全く同じであり、1番から4番まで順番に実施する必要があり、飛び越えることはできません。 医療に例えますと、1番の「異常検知」は、正常時との変化を検出するものであり、いわば定期健康診断に相当するものです。 2番の「原因診断」は、定期健康診断で早期発見された異常を、さらに掘り下げて精密検査を行うものです。 3番の「品質/寿命予測」に関しては、医学でも同様であるが、これまでの長年にわたるデータが揃うことにより、治癒率予測が可能になります。 4番の「パラメータ最適化」は、健康で過ごすための予防方法だと言えます(図2)。そして、豊かな人生を過ごすために、どなたも4番の予防までを期待されておられると思います。 図2. 医療診断の流れと、生産ラインにおける品質管理/設備状態監視の流れはよく似ている 生産ラインでも同様です。最後の4番まで実現できれば、ビジネス上の費用対効果(ROI)は最大となります。 それには、分析に必要な各種データを準備する必要があり、その質も重要になります。 しかしながら現実問題として、いきなり4番から実現することはできないため、4番のパラメータ最適化の実現をゴールとしながら、1番から順番に実現していく必要があることを御理解ください。また、医学でも同様のことがいえるかと思いますが、生産ラインにおける状態監視対象物によっては、1番の異常検知が技術的な限界となり、2番以降に進めない場合もあります。 この見極めも重要となってきますが、この点は本ブログのテーマとして別途取り扱いたいと思います。 前回のブログ  次回に続く

1 2 3 4 13