English

Data Visualization
Cindy Wang 0
How to Visualize Time Series Decomposition using SAS Visual Analytics

Time-series decomposition is an important technique for time series analysis, especially for seasonal adjustment and trend strength measurement. Decomposition deconstructs a time series into several components, with each representing a certain pattern or characteristic. This post shows you how to use SAS® Visual Analytics to visually show the decomposition of

Analytics
Mike Gilliland 0
SAS job opportunity: forecasting and machine learning specialist

The SAS Forecasting R&D team has an open position for a Forecasting and Machine Learning Specialist (apply here). What you’ll do As a Forecasting and Machine Learning Specialist on the SAS Forecasting R&D  team, you will help create innovative software to apply cutting-edge statistical methods to automated enterprise-scale business forecasting processes. You will:

Analytics | SAS Events
SAS Global Forum 2019 論文紹介シリーズ 第4回「オペレーショナル・アナリティクス for IT」

前回は、ビジネス価値創出につながる「オペレーショナル・アナリティクス for Data Scientist」ユースケースの論文を紹介しました。今回は、企業様にとって、クラウド上のインフラアーキテクチャと分析プラットフォームのデプロイメントについて、ご紹介します。昨今、なぜ「コンテナ」が注目されているのか、そして、クラウドやコンテナ上に分析プラットフォームを移行/構築し、活用することに関心があるのであれば、ぜひ最後までご覧ください。 1.Cows or Chickens: How You Can Make Your Models into Containers モデルは特定の作業(新しいデータをスコアリングして予測を出すこと)として役割を果たしてきています。一方、コンテナは簡単に作成し、廃棄し、再利用できることができます。実際、それらは簡単にインテグレートさせ、パブリッククラウドとオンプレミス環境で実行できます。SASユーザは本論文を通じて、簡単にモデルの機能をコンテナに入れることができます。例えば、パブリッククラウドとオンプレミス環境でのDockerコンテナ。また、SASのModel Managerは様々なソース(オープンソース、SAS、コンテナ等々)からモデルの管理を行うことができます。したがって、この論文はそれらの基本知識と、どのようにSASの分析モデルをコンテナに入れることをメインに紹介します。 2.Orchestration of SAS® Data Integration Processes on AWS この論文では、Amazon Web Services(AWS)S3でのSASデータインテグレーションプロセスの構成について説明します。例としては、現在サポートしているお客様がクレジット報告書を生成するプロセスを毎日実行しています。そして、そのお客様の対象顧客は1カ月ごとに1回その報告を受け取ります。データ量としては、毎日に約20万の顧客情報が処理され、最終的に毎月約600万人の顧客へ報告することとなります。プロセスはオンプレミスデータセンターで始まり、続いてAWSのSASデータインテグレーションでAPR計算が行われ、最後にオンプレミスデータセンターで報告書が生成されます。さらに詳しい情報としては、彼らのアーキテクチャ全体はマイクロサービスを使われていますが、同時にAWS Lambda、簡易通知サービス(SNS)、Amazon Simple Storage Service(Amazon S3)、およびAmazon Elastic Compute Cloud(EC2)などの独立した高度に分離されたコンポーネントも使われています。つまり、それらにより、データパイプラインに対するトラブルシューティングが簡単になっていますが、オーケストレーションにLambda関数を使用することを選択すると、プロセスがある程度複雑になります。ただし、エンタープライズアーキテクチャにとって最も安定性、セキュリティ、柔軟性、および信頼性もあります。S3FやCloudWatch SSMのようなより単純な代替手段がありますが、それらはエンタープライズアーキテクチャにはあまり適していません。 3.SAS® on Kubernetes: Container Orchestration of Analytic Work Loads 現在、Big Dataの時代で、Advanced analyticsのためのインフラストラクチャに対するニーズが高まっています。また、分析自体に対して、最適化、予測が最も重要領域であり、小売業、金融業などの業界ではそれぞれ、分析に対する独自の課題を抱えています。この論文では、Google Cloud

Advanced Analytics | Analytics | Learn SAS | Machine Learning | Programming Tips
Nelson Grajales 0
Machine learning with SASPy: Exploring and preparing your data (part 1)

SASPy is a powerful Python library that interfaces with SAS and can help with your machine-learning solutions. SASPy was created for Python programmers to leverage the power of SAS within their Python scripts. If you are not familiar with SASPy, see the following resources: Introducing SASPy: Use Python code to

Analytics | Data Visualization | Programming Tips
SAS Users 0
SAS Viya: Package for Python API for deep learning and image processing: DLPy

Editor's Note: This article was translated and edited by SAS USA and was originally written by Makoto Unemi. The original text is here. SAS previously provided SAS Scripting Wrapper for Analytics Transfer (SWAT), a package for using SAS Viya functions from various general-purpose programming languages ​​such as Python. In addition

Advanced Analytics | Analytics | SAS Events
SAS Global Forum 2019 論文紹介シリーズ 第3回「オペレーショナル・アナリティクス for Data Scientist」

今回は「オペレーショナル・アナリティクス for Data Scientist」をメインテーマとしてご紹介します。企業で分析業務を行うデータサイエンティストの皆様はご存知の通り、モデルは開発しただけでは意味がありません。そのモデルを業務に実装(デプロイ)してはじめて、ビジネス課題を解決し、価値を創出することができるわけです。SASが長年蓄積してきたナレッジをご覧ください。 1.Using SAS® Viya® to Implement Custom SAS® Analytics in Python: A Cybersecurity Example この論文は、SASの分析機能により支えられているプロダクションレベルのアナリティクスソリューションを開発しようとしているデータサイエンティストを対象としています。本文では、SAS ViyaとCloud Analytics Service(CAS)に基づく、CASの構築基盤とサイバーセキュリティを説明します。そして、SASアナリティクスを本番環境でPythonで実装する方法を説明します。 2.What’s New in FCMP for SAS 9.4 and SAS Viya この論文では、下記いくつかポイントをメインとして議論していきます。まず、SASが提供しているFunctionコンパイラー(FCMP)の新しい特徴を紹介し、それから主にFCMPアクションセットを中心とし、リアルタイムアナリティクススコアリングコンテナ(ASTORE)とPythonのインテグレーションについても説明します。それらの説明により、SASの新しいテクノロジーに対し、更なる理解を頂けることを期待しています。 3.Influencer Marketing Analytics using SAS® Viya® この論文はSAS Viyaを使って、マーケティングアナリティクスを行う事例を紹介します。近来、マーケティングはますますインフルエンサーが大きな役割をしめるようになってきています。それらのインフルエンサーたちはソーシャルメディアのコンテンツ作成者であり、多くのフォロワーを持ち、人々の意見に影響を与え、購入を検討する人々にも影響を与えています。インフルエンサーマーケティングは、より伝統的なマーケティングチャンネルと同じようにコストがかかるため、企業にとって最も効果的なインフルエンサーを選択することは非常に重要です。 こういった背景において、この論文では、ソーシャルメディアで本当に影響力をもつ人、そしてその影響程度はなにかについて分析することを目指しています。ケーススタディは、感情面の影響を与えることに焦点を当てています。また、多くのフォロワーを持つインフルエンサーとその色んな投稿とアクティビティを分析します。実施するには、Pythonのライブラリとコードが使用されます。次に、彼らのアクティビティとネットワークを分析して、それらの影響範囲を分析します。これらの分析には、SAS Viyaのテキストおよびネットワーク分析機能が使用されます。データ収集ステップ(Python)はクライアントとしてJupyter Notebookを使用していますが、分析ステップは主にSAS Visual Text Analytics(Model Studio)とSAS Visual Analyticsを使用して行われています。 4.Take

Analytics
Mike Gilliland 0
AI: the hype and the promise for forecasting

Artificial Intelligence for Forecasting Can artificial intelligence augment and amplify our forecasting efforts? Will AI impact our forecasting roles and processes? Does AI deliver the automation and forecast accuracy we've been pursuing? These are the sorts of questions to be addressed by a stellar panel of world-class experts at the

1 2 3 310