Data for Good

See how data is being used to address humanitarian issues around the world

Data for Good | SAS Events | Students & Educators
0
第三回Data for Good勉強会 活動レポート

SAS Japanでは昨年末より”Data for Good”を目指す学生コミュニティ「SAS Japan Student Data for Good community」を運営しています。このコミュニティは、Data For Goodを題材にデータサイエンスの一連の流れを体験する場として設立されました。今回紹介する勉強会も、その活動の一環です。詳しくは「Data for Goodを通じて"本物の"データサイエンティストになろう!」の記事をご覧ください。 三回目の勉強会ではヒートアイランド現象をテーマに、課題設定の部分を学びました。   ヒートアイランド対策、”どこ”から? ヒートアイランド現象とは、都市部の気温が周りに比べて高くなる現象です。その要因には、都市化による土地利用の変化や人間活動で排出される熱などがあります。対策事例として人口排熱削減のために次世代自動車の普及をしたり、保水性舗装の普及や屋上緑化を推進して地表面被服の改善を目指したりというものが行われています。 勉強会で取り上げたヒートアイランド対策事例の一つに、リッチモンドのヒートマッピングがあります。ヒートアイランド現象は都市部と郊外を比較して都市部の方が暑いという考え方が一般的です。しかし、植生域より人口被覆域の方が地表面からの大気加熱を大きくすることや、明るい色の舗装より暗い色の舗装の方が熱を吸収して暑くなることから、都市部の中でも暑さに対する強度は場所によって異なります。そこで、リッチモンドでは「都市の中でも特に暑さの影響を受けやすい場所を見分ける」ことで、対策を優先して行うべき場所の判断をサポートするためのプロジェクトを開始しました。そのアプローチとして、 リッチモンドをブロックで分けた各地点の気温・場所・時間のデータを収集する 観測データ+土地利用マップ+住民の収入データ→各地点のヒートアイランドに対する脆弱性レベルを定量化・可視化 に取り組んでいます。このプロジェクトは2017年にリッチモンドで開始し、今では様々な都市に活動の輪を広げています。詳しい内容はこちらの記事(英語)をご覧ください。   解くべき課題を設定する これらの知識を踏まえて、次は「課題設定」を行いました。自分たちでヒートアイランド現象という問題に対して、解くべき課題は何か・解決するために誰のどのような意思決定が必要か・どのようなデータが必要か、についてディスカッションをしました。 議論を進めていく中で、さまざまな意見が飛び交いました。その中には、テーマとして設定していたヒートアイランド現象を解決するというよりも、ヒートアイランド現象が”障壁”となって起きるであろう「熱中症を未然に防ぐ」というものを課題に設定するという意見がありました。その解決策として、リッチモンドの事例を応用した「ある人がいる地点の体感気温+その人の体温のデータをリアルタイムで収集し、熱中症のおそれがある場合に通知するアプリケーションの作成」などの案が出てきました。 ディスカッションをすることで、自分では思いつかない新鮮な発想に触れることができたり、テーマに広がりを持たせることが出来たりすることを感じました。アナリティクスの結果を活用するアクションを考えるための「課題設定」を実際に体験できたディスカッションになりました。   コミュニティメンバー募集中! SAS Japan Student Data for Good communityでは引き続き学生の参加者を募集しております。社会貢献を目指す活動を通してデータサイエンティストの役割である「課題の設定」から「データを用いた解決法の提示」までの一連の流れを経験できます。 興味をお持ちでしたら下記の事項をご記入の上JPNStudentD4G@sas.comまでご連絡ください。 大学名 / 高校名 名前 メールアドレス  

Data for Good | Students & Educators
0
Data for Goodを通じて"本物の"データサイエンティストになろう!

アナリティクスは数多くの課題を解決してきました。ビジネスにおけるデータサイエンスの有用性は周知の通りであり、既に多方面で応用されています。SASはこれを発展させ、データを用いて社会課題を解決する“Data for Good”を推進しています。本記事では、その一環として設立したSAS Japan Student Data for Good Communityについてご紹介します。 SAS Japan Student Data for Good Community データサイエンスにおいて最も重要なのはアナリティクス・ライフサイクルです。これはData・Discovery・Deploymentからなる反復型かつ対話型のプロセスで、このサイクルをシームレスに回し続けることで初めてアナリティクスは価値を発揮します。データを用いたアプローチが可能な課題の発見から、分析結果を活用する具体的なアクションまでを含む一連の流れのもと、そのアクションに「必要な情報」は何か、その情報を導き出すためにはどのようなデータや手法が使えるかと思考をブレークダウンし、議論を重ねることが大切です。しかし、学生の授業や書籍による学習は具体的なデータ分析手法や統計理論にフォーカスされ、上記のようなデータサイエンスの本質的な流れを学習・実践する場が殆どないのが現状です。そこで、学生がData for Goodを題材にデータサイエンスの一連の流れを実践する場としてSAS Japan Student Data for Good Communityを設立しました。本コミュニティの目標は以下の三つです。 学生が主体となって議論・分析を行い、Data for Goodを推進すること。 データサイエンスのスキルを向上させること。 学生間の交流を深めデータサイエンスの輪を広げること。 活動内容 ・Data for Good 山積する社会問題のなかからテーマを選択し議論や分析を通してその解決を目指す、本コミュニティのメインの活動です。議論は主にオンライン上で行いますが、適宜オフラインでの議論や分析の場を設けます。もちろん、社会問題の解決は一般に困難です。データは万能ではなく、アナリティクスが唯一の絶対解とも限りません。しかし、課題をいくつかのステップに区切り、その一部分だけでもデータの力で改善することは十分可能であると考え、そのために学生間で様々な議論を重ねることは非常に有意義だと感じています。そもそもData for Goodの考え方は、「事象の把握にデータを使用すること(Descriptive Analytics)」ではなく、アクションを行う際に「データを用いてより良い意思決定の支援をすること(Predictive/Descriptive Analytics)」です。課題そのものの理解から、いくつかの施策がある中で、データのアベイラビリティなども踏まえて、「アナリティクスで解くべき(解きやすい/解く意味のある)問題」は何かを考える必要があります。これらは確かにChallengingではありますが、他の学生とのアイデアの共有や現場のSAS社員からフィードバックをもとに、協力しながらプロジェクトを進行させられることは本コミュニティの大きなメリットの一つです。将来的には関連NPO法人との連携も計画しています。 ・勉強会 月に一回、SAS六本木オフィスにてコミュニティ内の勉強会を開催します。複数の社会問題をテーマとし、後述するアナリティクス通信を通して学んだ事例・知識に基づき、それらの課題解決にどのようなアプローチ(必要なデータ・有効な分析手法等)が有効であるかについて議論します。社会問題に対する見聞を広めるとともに、「アクション可能な課題を見つける」・「データを用いたアプローチを考える」といったデータサイエンスを進めるうえで重要となる観点を養います。以前開催した勉強会の様子はこちらの記事からご覧ください。(第一回・第二回) ・アナリティクス通信 週に一回、先述の勉強会で議論を進めるために必要な知識やデータをまとめたアナリティクス通信を配信します。コンテンツの内容は、社会問題の背景知識・関連するオープンソースデータ・データサイエンスに関するTipsなどを予定しています。データの見方を養う機会や、意欲あるメンバーが実際に分析を行うきっかけになることを期待します。 ・外部イベントへの参加 データ分析能力の向上や、Data for Goodに応用可能な新たな視点の獲得等を目的とし、有志メンバーでの外部データ分析コンペティションや関連講演会への参加を企画しています。 コミュニティメンバー募集! 上記の活動に加え新規活動案は随時受け付けており、学び溢れるより良いコミュニティを目指していきます。社会問題を解決したい方やデータサイエンスの力を養いたい方など、多くの学生のご参加を期待しています。(学年・専攻等の制限はありません。前提知識も仮定しません。中高生のご参加も歓迎します。)本コミュニティの活動にご興味がおありでしたら下記事項をご記入の上JPNStudentD4G@sas.comまでご連絡ください。 お名前

Data for Good | Students & Educators
0
社会課題の解決に向けて一緒に考えてみよう~GatherIQの魅力~(第三回)

前回の記事ではData for GoodのためにSASが提供するアプリ GatherIQをご紹介し、そのトピックとして「男女平等」「健康」について取り上げました。第三回となる今回は、「生命の源である水」と「衛生」の2つのテーマについてGatherIQの提供するデータを基に取り上げてみたいと思います。 “生命の源である海” 多くの人もご存知かと思いますが、海は地球上の大部分を覆っており、その占有率は70%を超え、これにより地球上の水分の97%は海上に存在しています。また、海には現在20万種の生物が生息しており、その種類は100万種を超えるとさえ言われています。まさに海は生命の源といえるでしょう。 それだけでなく、海は温暖化にも関与しており、大気中の30%の二酸化炭素は海水に吸収されることで緩衝液としての役割も果たしていると述べられています。このように、海は地球にとって非常に重要な要素であることがわかります。 汚染 温暖化を緩和している一方で、海に溶けている二酸化炭素の量は増加します。これにより海水のpHが上昇し、これがカルシウムイオンと炭酸イオンが結合することを阻害します。カルシウムイオンと炭酸イオンは結合すると炭酸カルシウムになります。貝や魚の体の主成分である炭酸カルシウムの減少は、彼らの身体構造の形成を阻害し、結果的に魚や貝は減少の一途を辿ります。また、私たち一般人が捨てたゴミによる汚染被害も甚大です.一部のゴミは、私たちがゴミ箱にゴミを捨てる際に零れ落ちた物であり、これらの捨て損ねられたゴミ達は排水溝へと落ち、水に乗って海へと流れつきます。 "Ocean Trash is a Problem You Can Solve" Ocean Conservancy 記事によると、海の40%が深刻な汚染状況にあります。 マイクロプラスチック マイクロプラスチックもまた、海の汚染の大きな要因となっていることで近年メディアで度々取り上げられていますが、その恐ろしさについてはご存知でしょうか。マイクロプラスチックはプラスチック製品の原料となる小さなプラスチックが工場の排水や輸出船からの漏出によって海に流れたものを主とし、その大きさは目で見える小さな大きさの物から、顕微鏡でしか見えない大きさの物まで様々です。また、人の捨てたゴミは潮流で合流し、衝突しあい、紫外線や海水にさらされて風化し、粉々になります。これらもマイクロプラスチックとなり、海を漂うのです。マイクロプラスチックはその安定性から重宝されていましたが、皮肉なことに、その能力故に、彼らは海の中を非常に長い期間漂い続けることができます。カラフルで小さなマイクロプラスチックは魚卵などと間違われ、魚に食べられて消化されることもなく魚の胃の中に残留します。マイクロプラスチックの恐ろしい点は、これを摂取した魚が一切食事を取っていないにも関わらず、胃の中に残るマイクロプラスチックによって満腹感を得て飢餓状態となってしまい、最終的に餓死してしまうという点です。 "The Nurdles' Quest for Ocean Dominance" TED Ed 動画では、かわいい見た目のマイクロプラスチック達による地球侵略計画というイメージでこの問題を説明している。 人間への影響 では、マイクロプラスチックと海水の汚染や酸性化は人間の生活にどのような影響を持つのでしょうか。まず、酸性化による牡蠣、あさり、サンゴ、ウニなどの魚介類 の減少により、価格は上昇し、これらを食べることが困難になります。彼らを主食とする人は世界に1億人いるとされており、その人達の主要なタンパク質源が消え、健康被害が出ると考えられます。また。マイクロプラスチックに関して、これを食べた魚が餓死するだけでなく、マイクロプラスチックを食べた魚をさらに上位の捕食者が食べることで食物連鎖を辿り、捕食者の胃にマイクロプラスチックが残り、捕食者共々餓死していくという負のループが完成していきます。これにより海の生態系は壊滅状態になり、魚類は減少し、魚類を食べられなくなる可能性が高くなります。 "Ocean Acidification Explained in 2 Minutes" Grist 私たちができること マイクロプラスチックに関して、私たちも改善に向けて協力することができると私は考えています。マイクロプラスチックは安定性が高いですが、永久に海に留まることはできません。GatherIQに挙げられた動画には、マイクロプラスチックを減らしていくために、まずプラスチックの使用を避けていくことから始めて行くべきだと述べられています。リサイクルを行い、プラスチックをガラスや紙に代替して少しずつプラスチックの使用を減らすことができれば、将来的に海水中を漂うマイクロプラスチックは消えていくことが示唆されています。日常で一時的に使用するプラスチックは、予めカバンに持ち運ぶことで使用せずとも良い物が多いということにお気付きでしょうか。ここでいう一時的に使用するプラスチックとは、コンビニで商品を入れるための袋や、カフェでコーヒーを入れてもらう際のコップやストロー、食品を保存する時に使用するラップ、などを指します。上記の物でいえば、マイバッグの持参で私たちが普段使用しているコンビニの袋が不要になり、カフェでコーヒーを飲む時も、ストロー付きのタンブラーを持参していればプラスチックの容器は不要になります。また、ミツバチの蜜蝋でコーティングされたエコラップは、繰り返し洗って使用できるラップであり、これを使用すればラップはもう必要ありません。このように、少しずつ、小さなことから私たちにできる行動は確かに存在します。 しかし、現状を知らなければ具体的に何が必要で何をしなければならないかもわかりません。GatherIQに集められたデータ達は、そのような「現状」を理解する手助けが少しでも出来たら、という思いがもととなり提供されています。 “衛生” 上記で記載した地球上の水分の内、海水ではない残りの3%の水分は飲み水として利用できる安全な水です。私たちが普段生活の中で使用する水(飲料水以外の、トイレの水や蛇口から出る水)は、この3%の水から使用されています。 途上国と先進国、各々の課題 さて、現在でも清潔で安定な水を使用できない人は多く存在します。世界中で、8.4億人以上の人が安全な飲料水を獲得できておらず、これは計算すると、総人口の内、9人に1人が安全な水を得られていないことになります。 "The Human

Advanced Analytics | Analytics | Customer Intelligence | Data for Good
Carlos Cáceres 0
El auge del análisis de sentimientos, la solución para que las máquinas entiendan mejor a los humanos

Los seres humanos tenemos una característica –entre muchas que nos hacen únicos– que requiere de la comprensión de nuestros interlocutores para causar el efecto deseado: somos capaces de decir una cosa queriendo expresar un sentimiento completamente diferente. Lo llamamos sarcasmo, ironía o mordacidad. Pero, si a veces es difícil para

Data for Good | Students & Educators
0
社会課題の解決に向けて一緒に考えてみよう~GatherIQの魅力~(第二回)

前回の記事で、Data for GoodのためにSASが提供するアプリ GatherIQをご紹介し、そのトピックの一つとして「教育」について取り上げました。今回は、「男女平等」と「健康」の2つのテーマについてGatherIQの提供するデータを基に取り上げてみたいと思います。 “男女平等” 皆さんは性別による格差を感じることはあるでしょうか。日本ではしばしば女性が男性と不平等に扱われていることで問題となりますが、それもここ数年でだいぶ変化してきたと私は感じております。今でも女性が差別に対し立ち上がることは難しくはありますが、以前であれば声を上げることですら不可能であったように思われます。日本、そして世界の性別によるギャップはどのような事態に置かれているのでしょうか。 日本と世界の違い GatherIQによると、性別におけるギャップの少ない国では、日本は世界的に見て111位であり、東南アジア及び太平洋周辺では下から4番目の順位です。これは、中国が99位、フィリピンが7位であることを踏まえると、日本は性別に関して非常に平等性が低いことは明らかです。 一方、性別におけるギャップがない国で上位に位置しているのはアイスランド、ノルウェー、フィンランドなどの北欧の国々でした。 しかし世界経済フォーラムは、未だ尚、世界のどの国も性格差のない平等な国とは言えないと述べます。 こちらのリンク先では、地域や指標を指定することで様々な順位分けを示してくれます。GatherIQではこのように、皆さんがデータや表のインタラクティブな操作が可能です。 データで見る「格差」 性別における格差は女性差別に関するものが主なようです。その分野は、教育、雇用、肩書き、暴力など、多岐にわたります。 雇用や肩書きでは、主要な役職や収入などの点で女性が男性に比べ平等に扱われていないと述べられています。 2017年における女性の平均収入は男性のおよそ半分である。CEOを務めるJohnという名の男性の数よりもCEOを務める女性の数は少ない。 暴力の点では性別における格差は更に深刻です。女性の内35%が虐待にあった経験があり、この中身としては、結婚を強制される、暴行を受けるという内容から人身売買という内容まで、多様です。 また、教育の現場においては家庭事情や学校での出来事により女性が教育を受けられない場合が多いようです。家の家事をしなければならない、学校でセクシュアルハラスメントを受けてから怖くて行けなくなった、などの理由が述べられていました。 平等による利益 では、男女平等であることによるメリットは何でしょうか。女性が平等に生きられる。これは確かに重要なことです。しかし、男女平等により得られる利益は女性だけに限ったものではないとGatherIQでは記載されています。男女平等に努める国は、武力に訴える傾向が低く、平和を維持しやすいようです。この傾向は、GDPの高い国や民主主義の国よりも高いと述べられています。また、こうした格差の少ない国では子供の人生における満足度や幸福度が非常に高く、そのため、男女平等である国は暴力による死者も少数です。 格差を生まないためにどう行動すればよいのだろうか? では、格差を少なくするにはどのようにすればよいのでしょうか。GatherIQには解決の糸口の一つが示されています。 “Boys and young men need to be educated and encouraged to be agents of change--to fight for the girls in their communities and prevent violence.” 「若い男性が主体的に変化を起こすことができるように教育し、勇気付けることが必要である。―彼らがコミュニティの中で女性のために戦い、暴力を防げるようになるために。」 私たちができることは、これからの世代に、今までの歴史や努力を伝えること、そして人類の発展のために男女平等が重要であると教えていくことではないか、と感じます。 “健康” 2つ目のテーマとして、健康についてお話をします。長く生きていくために、健康は不可欠な要素でしょう。GatherIQによると、健康の指標となりうる平均寿命の長い国では、健康な人が貢献することでより発展しやすいと言われています。

Data for Good | Students & Educators
0
社会課題の解決に向けて一緒に考えてみよう~GatherIQの魅力~(第一回)

現在、世界規模の大きな問題が多く存在しています。その問題は、飢餓、貧困、差別、異常気象など、どれも解決が困難なものばかりだと思われます。SASでは、これらの問題の解決に向けて多くの人の助けを借りるための手段の一つとして、GatherIQというアプリの提供を行っています。今回はこのGatherIQについて、その内容に触れつつご紹介します。 GatherIQとは何か? GatherIQはData for Goodの一環で作製されたアプリです。まず、Data for Goodとは、世界的に解決の困難な問題を取り扱うNPO団体などを通じて得られたデータを分析し、世界の課題を解決してより人々を幸せにする取り組みのことです。GatherIQの最大の特徴は一般人参加型のアプリケーションとなっているという点であり、これによりPCからの利用のみならず、アプリのダウンロードによりスマートフォンからの利用も可能となっています。また、NPO団体等から得たデータを分析したものを自由に取得できるため、研究の題材としたり、自身の学習に使用したりすることができるようになっています。 その内容は具体的にどのようなものなのか? GatherIQでは「貧困の根絶」や「男女平等」、「健康」などの多岐にわたった17のテーマを扱って世界の課題を解決する糸口の提供を行っています。GatherIQのデータは、様々な形式で提供されています。 テーマごとにデータが分けられており、その形式も様々である。 これらの形式はその使用場面に応じて特化しています。つまり、テーマの概要を知りたい時にはOverview、気軽に見たい時は動画やクイズ、データをより多く知りたい時にはデータストーリーの閲覧を、というように多様な用途での使用が可能となっています。 さて、今回はGatherIQの提供しているデータの中から、「教育品質」のテーマについて取り上げてみたいと思います。 教育はなぜ大事なのか? 社会を繁栄させるには、働き手の潜在的な知識レベルが高いことが必要不可欠であるといわれています。多くの専門家は、教育が発展的な進化を遂げているとき国は繁栄すると発言しており、経済の安定性と成長率が教育と直接的に結びついているとも発言しています。特に、初等教育である計算力や識字力は将来経済成長の際に必要とされる技術を見通す力を得るために必要不可欠であるとされています。教育の水準の上昇により、個々人の知識のレベルが上がるため、雇用率が上昇します。そのため、結果的に経済及び、国全体が発展します。 "Inclusive Education - Education Equity Now" UNICEF Europe & Central Asia 何が課題なのか? 未だ尚、学校に行くことのできない子供や、教育を受けることのできない子供は一定数存在します。世界規模で見て、小学校に行くことのできない子供は2015年の時点で6,300,000人存在し、これは1975年と比べると半分にまで減少しましたが、それでもまだたくさんの子供が必要最低限の教育すら受けられていないことがわかります。全ての子供が必要最低限の教育を平等に受けられるようになるには、まだまだ及んでいないということがこのデータからわかります。 変化しつつある各国の意識 しかし、グローバルな視点から見ると、世界的には教育を推進する傾向にあると考えられます。世界的な識字率は過去30年の内に劇的に上昇していることが判明していますが、この背景には多くの国がinclusive education(全ての子供が平等に教育を受けられ、個性を尊重して学ぶ教育方法)を取り入れているからであると言われています。 特に、北アフリカや中東では一世代の違いだけで識字率の上昇が著しくなっています。一方で、世界的に見た教育レベルとしては、一部の先進国は低迷状態にあるようにも感じられます。USAは教養のある国としては、世界6位に位置していますが、計算力と識字力のテストスコアランキングでは世界31位となっています。 教養のある国ランキング(上図)ではUSAは6位だが、計算力と識字力のスコアランキング(下図)ではUSAは31位である。 ここから、USAは他の国に比べて計算及び識字の習熟度において遅れを取っていることが示唆されています。GatherIQの記事では、教育を推進するためには、教育者や生徒を確実に支援するための政策を制定することが第一であると述べられています。生産の効率化や経済成長を促すためには、各国がより真摯に、子供たちに教育を享受させる取り組みについて熟慮することが必要不可欠でしょう。 このように、GatherIQを用いて一般の人でもデータを用いて考察や現状認知を行うことが可能です。他にも、教育のテーマに対して、これから子育てを行う主婦の方や教育関係者の方にとっては、GatherIQのデータから初等教育が国にとっても当人にとっても非常に重要であることが読み取ることができるかも知れません。そこから、初等教育を受ける子供たちに念入りに教育を促す動きが生まれる可能性は容易に予測できると思います。 以上がGatherIQの御紹介でした。GatherIQについて更に知りたいという方はこちらからアクセスください。また、SASのWebページやブログではData for Goodに関する考察や情報も公開していますので、併せて御覧ください。 SAS JapanではStudent Data for Good communityを開催し、Data for Goodの達成を目指す学生の参加を募集しています。 興味をお持ちでしたらJPNStudentD4G@sas.comまでご連絡ください。

Data for Good | SAS Events | Students & Educators
0
第二回Data for Good勉強会 活動レポート

SAS Japanでは昨年末より”Data for Good”の達成を目指す学生コミュニティ「SAS Japan Student Data for Good community」を運営しています。このコミュニティでは生物の絶滅と人類との関係の分析や通勤ラッシュ時の鉄道混雑緩和など、データを活用した社会課題の解決に取り組んでいます。 二回目となる今回の勉強会では、DataKind社の事例から精神疾患に苦しむ人の生活の向上をテーマに、課題の設定方法をメインに学びました。 精神疾患に苦しむ人々に質の高いケアを提供する 今回扱った事例は、Data for Goodを推進する社会団体であるDataKind社とイリノイ州シカゴで精神疾患の患者を支援している非営利団体であるThresholdsが共同で行ったプロジェクトです。 精神疾患の患者が引き起こす傷害事件や、自殺者の増加、子どもの登校拒否など、精神疾患が原因の社会問題はアメリカにも深刻な影響を与えています。Thereholdsは治療機会や住居の提供を通して精神疾患のある人々の支援を行ってきましたが、資金/人手不足により精神疾患患者に質の高いケアを提供することは困難を極めていました。 そこでDatakind社と共同プロジェクトを開始し、「支援を優先すべき患者を把握する」ことで限られたリソースの中で質の高い支援を行うことを目指しました。このプロジェクトでは、実際のアプローチとして 患者データを一括管理できるデータウェアハウスの構築 支援者が使いやすいダッシュボードの作成 患者間のリスクスコアリングのための予測モデリングの基礎の開発 に取り組んでいます。 3の予測モデリングでは、支援を優先すべき患者を予め把握することで問題解決につなげることを目的にしています。今回のプロジェクトで予測モデリングの土台を築き上げられたことから、今後は精神疾患患者の支援に最良な意思決定のサポートができるようになる見込みです。詳しい内容は記事DataKind社の事例紹介(英語)をご覧ください。 解くべき課題を設定する DataKind社は「支援を優先すべき患者を把握する」ことで資金や人手不足の中でも質の高いケアを提供することに挑みました。 では自分たちならこの問題のどの部分に着目して「課題設定」を行い、その課題を解くにはどのようなアプローチが考えられるのか議論しました。 その中で興味深い意見としては、 課題を「精神疾患の早期発見」と設定し、その解決策として「異変に気付きやすい周りの家族・友人が、簡易的に精神疾患をチェックでき、次にとるべき行動を示してくれるアプリケーション」 といったものがありました。 このアプローチは急な病気やけがの際にインターネット上で緊急度を確認できる救急受診ガイド(東京消防庁)と似た発想であり、どちらも限られたリソースを上手く活用するために機械で判断が可能な部分は機械に任せ、人間がより重要な仕事に時間を割けるようにする取り組みといえます。 上記以外にも様々な意見を交わし、課題の設定方法を学びました。 普段私たちは与えられた課題を解くことはあっても、自分たちで課題を設定する機会はあまりないように思えます。しかしデータ分析において課題の設定は非常に重要で、勉強会を通して意見を共有しながら議論を進められたのは、私たちが取り組んでいるプロジェクトを考える上でも参考になりました。 コミュニティメンバー募集中! SAS Japan Student Data for Good communityでは引き続き学生の参加者を募集しております。社会貢献を目指す活動を通してデータサイエンティストの役割である「課題の設定」から「データを用いた解決法の提示」までの一連の流れを経験できます。 興味をお持ちでしたら下記の事項をご記入の上JPNStudentD4G@sas.comまでご連絡ください。 大学名 / 高校名 名前 メールアドレス また、第4回を迎える学生向けセミナー「データサイエンティストのキャリアと活躍のかたち」 は2019年7月25日(木)19:00~ SAS東京本社(六本木ヒルズ11F)にて開催予定です。 現場で活躍されているデータサイエンティストの方々から、具体的なお仕事の内容や学生の内に学ぶべきこと等をお伝えする予定です。 みなさんのご参加お待ちしております。

Data for Good | SAS Events | Students & Educators
0
第一回Data for Good勉強会 活動レポート

SAS Japanでは昨年末より”Data for Good”を目指す学生コミュニティ「SAS Japan Student Data for Good community」を運営しています。このコミュニティでは世界の絶滅危惧種や通勤ラッシュ時の鉄道混雑緩和など、データを活用した社会課題の解決に取り組んでいます。 活動を更に加速させるために、Data for Goodのケーススタディを通じた課題設定・アナリティクスの適用法を学ぶ勉強会を開催しました。 この記事では勉強会の中で取り上げた事例を2つ紹介します。 1.ネパール地震でのIOMによる支援 1つ目の事例はSAS USが国際移住機構(IOM)と協力して行ったネパール地震における復興支援です。 2015年4月25日に起きたネパール地震では約90万棟が全半壊し、多くの住民が仮設キャンプ場での生活を余儀なくされました。IOMは現地でキャンプ場の運営等の支援活動を行っていましたが、6月から始まる本格的な雨季を前に風雨を凌げる住居の提供が喫緊の課題でした。 IOMの要請を受けたSAS USは国連商品貿易統計データベース(UN Comtrade)を利用した各国のトタン板の生産能力を分析し、その結果迅速なトタン板の供給を実現しました。この事例からは次の事が学べます。 データの可視化によって意思決定の支援ができる この事例では住宅復興支援に必要な物資の素早い調達という課題に対し、国連商品貿易統計データベースの300万件ものデータをSAS Visual Analyticsで分析し仕入れ先を可視化することで解決しています。 複雑で膨大なデータも適切に分析・要約・可視化することで経験ではない科学的根拠に基づいた新たな知見を導くことができます。 2. 大学中退率の改善 2つ目の事例はData for Goodを推進する社会団体であるDataKindが取り組んだアメリカのとある大学の中退率の改善です。 日本の大学と比べアメリカの大学は中退率が高く、 National Student Clearinghouseによると約半数近くの学生が学位を取得せず辞めていきます。DataKindは大学の依頼を受け、どの要素が中退に影響を与えるのか、また中退の危険性のある学生を事前に特定することに挑みました。 デモグラフィックデータや学業成績などの学生情報を10年分以上分析したところ、入試の成績と卒業は関連が確認できなかった一方で、GPAや専攻などが卒業に影響を与えていることが判明しました。 この結果を踏まえ20以上もの異なるアプローチのモデルを生成し改良を重ねた結果、生徒の中退を高い精度で予測するモデルを生み出しました。 詳しい内容は原文をご覧ください。この事例からは次の事が学べます。 未来を予測して事前に対処する この事例では、中退率の改善という課題に対して統計分析や機械学習を駆使し事前に中退リスクのある学生を特定することで解決を目指しています。事前の把握ができれば大学側は効率的な学生への支援が可能となるはずです。 上記以外にも参加者それぞれが事例紹介を行い、課題に対してのアナリティクスを用いたアプローチ方法を学びました。勿論データを分析のみで課題をすべて解決することはできませんが、従来の方法では成し得なかった突破口を生み出すことが実感でき、私たちの現在の取り組みに大きな示唆をもたらした有意義な会となりました。 SAS Japan Student Data for Good communityでは引き続き学生の参加者を募集しております。社会貢献を目指す活動を通してデータサイエンティストの役割である「課題の設定」から「データを用いた解決法の提示」までの一連の流れを経験できます。 興味をお持ちでしたら以下のアドレスまでご連絡ください。 JPNAcademicTeam@sas.com

Analytics | Data for Good
Alison Bolen 0
5 inspiring reads for Earth Day

From saving cheetahs to preserving fresh water systems, analytics plays a role in many inspiring conservation projects around the world. Read on to learn about a few of our favorites. 1. Protecting animals from extinction  Learn how analyzing footprints could help save cheetahs in Namibia and other endangered animals around

Analytics | Data for Good
NC HealthConnex, SAS 애널리틱스로 최신 의료 서비스를 제공하다

지난 2월, 미국 노스캐롤라이나(NC)주는 SAS 및 InterSystems와 제휴하여 주 정보기술부(North Carolina Department of Information Technology; NC DIT) 산하의 ‘건강 정보 교환 센터(Health Information Exchanges; HIE)’ NC HealthConnex의 현대화 소식을 발표했습니다. NC HealthConnex는 향상된 진료 서비스와 환자의 안전을 지원하고 진료 이전을 용이하게 하며, 주 전역에 걸쳐 4,500개 이상의 의료 시설에 관련

Analytics | Data for Good | Data Management | SAS Events
Heather Hallett 0
Puzzle obsession ... piecing together a 360-degree view of a patient.

I am obsessed with jigsaw puzzles. Specifically, 1000-piece mystery puzzles, entertaining not just for their pictorial humor, but also for the challenge. Unlike traditional puzzles, you don't know what you are putting together because the completed puzzle isn't pictured on the box. Mystery puzzles are constructed so that you must

Data for Good | Learn SAS | Students & Educators
Sian Roberts 0
Breaking down walls for science: SAS Press donates books to the world’s largest research methods library

In a move to combat "stataphobia" and foster excellence in statistics in developing countries, SAS Press last month donated 70 SAS Press titles to the Serageldin Research Library at the Library of Alexandria in Egypt. The library’s mission is to achieve statistical equity so that a student in Chad has

1 2 3 8

Back to Top