Analytics

Find out how analytics, from data mining to cognitive computing, is changing the way we do business

Analytics | Artificial Intelligence | Internet of Things
Jihye Yoo 0
이젠 야구도 데이터로 배운다! (The Batting Lab)

야구에 데이터를 더한다면 어떤 효과가 일어날까요? 야구 실력도, 데이터 활용 능력도 향상시켜줄 어린이를 위한 데이터 리터러시 프로그램, SAS ‘배팅 랩’을 소개합니다. 전 세계적으로 7,000명 이상의 경영진을 대상으로 진행한 한 설문조사에 따르면 85%가 미래에는 데이터 활용 능력이 오늘날 컴퓨터 사용 능력만큼 더욱 중요해질 것[1]이라고 답했습니다. 반면, 48%의 어린이는 현재 교육 과정이 데이터

Analytics | Cloud | SAS Events
Shadi Shahin 0
Your analytics, your way

Maybe you’re a SAS®9 programmer in the insurance industry who stores her analytics projects in a local desktop folder, or in a Git library. Or maybe you’re a data scientist who specializes in aviation forecasting and loves the no-code environment of SAS® Viya®. Or maybe you’re a Python devotee at

Analytics
Andrew Pollard 0
The Deliveroo Effect on Insurance

Customer acquisition and retention primarily fall on sales and marketing teams. But every department within an insurance company has a role to play in these activities. Claims handling is a great example. Any insurer's performance at this emotionally charged time is their litmus test. It can determine whether customers renew

Advanced Analytics | Analytics | Artificial Intelligence
Dwijendra Dwivedi 0
7 common pitfalls to avoid when creating business value from AI

Artificial intelligence (AI) is causing a digital transformation that is changing businesses’ operations. It is likely to bring a sea change compared to the Industrial Revolution. Many challenges with AI are technical, but most failures occur because of poor strategy and execution. Fortunately, there are some steps you can take

Analytics | SAS Events | Students & Educators
Alex Coop 0
Canadian post-grads tease policy recommendations from data during National Policy Challenge

To help burgeoning data researchers apply data analysis skills across policy sectors in economic, health and social science-informed areas of study, they need both policy and data industry experts to help them develop these critical skills before they graduate. The National Policy Challenge was developed with this goal in mind.

Analytics | Risk Management
Jihye Yoo 0
SAS, 가마쿠라 인수로 금융권 변동성 대응 지원 강화

SAS가 하와이 호놀룰루 소재 리스크 관리 전문기업 가마쿠라(Kamakura Corporation)를 인수했다는 소식을 전해 드립니다. 가마쿠라는 은행, 보험사, 자산운용사, 연금 기금 등 광범위한 금융 기관들이 다양한 유형의 금융 리스크를 관리할 수 있도록 전문 소프트웨어, 데이터 및 컨설팅을 제공하고 있는 비상장기업입니다. 치솟는 인플레이션과 경기 침체가 세계 경제에 먹구름처럼 드리워지면서, 크고 작은 금융 서비스

Analytics
0
電力平準化問題に対するSASのアプローチ(2)

はじめに 前回のブログでは、電力平準化問題が数理最適化のスケジューリング問題として扱えること、SASのCLP Procedureで簡単にモデリング可能であることを紹介しました。今回は具体的にサンプル問題でCLP Procedureの使い方を見ていきます(ブログ末尾にサンプルコード記載)。 CLP Procedureの使い方 ここではプロシジャの使い方を分かりやすく示すため、図1のような3タスク、2設備の簡略化された問題のスケジューリングを例として説明します。タスクの詳細な設定は表1の通りとします。   中身の詳しい説明に入る前に、一つだけ最適化の処理で理解しておくべき概念として、Resourceというものを紹介します。Resourceとはタスクを実行するために必要な何かしらの資源で、CLP Procedureによるスケジューリングでは「ある時間帯の使用電力がXである=電力という資源をX占有する」のように読み替えることがポイントです。図1を例にとると、全体のResourceとしては電力設備M1とM2が1つずつ、電力は設定した電力上限分が用意されており、タスクA実行中は電力設備M1というResourceを1つ、電力というResourceを電力波形で表される分だけ各時間で占有する、と見なすことができます。最終的に実行可能なスケジュール(同じ時間帯に複数のタスクが同じ設備で実行されない、電力上限を超過しない)を作成することは、各タスクが上限の範囲内で上手くResourceを分け合うような割り当てを作成することに置き換えられます。 では、実際にSASコードでCLP Procedureを呼び出してスケジューリングを行う部分ですが、必要なのは以下のコードだけです。 proc clp actdata=act resdata=res schedtime=outtime schedres=outres; run; “schedtime”と”schedres”は出力先データセットの指定なので、ユーザーが用意する必要があるのは入力データの”actdata”と”resdata”のみです。では、それぞれのデータセットの内容を確認してみましょう。 “resdata”ではResourceの設定を行います。上での説明の通り、電力設備M1とM2が1つずつで、使用可能な電力総量の上限が“12”であることを表現しており非常に簡潔な設定です。 “actdata”はスケジューリングの対象となる最小要素であるActivityの設定を行います。今回の例では、タスクを図1のように分割したフェーズそれぞれを一つのActivityと考えます。こちらのデータセットは様々な要素が一行に並んでいるのでやや複雑ですが、設定項目は大まかに5種類の系統に分かれます。 まず_ACTIVITY_列では、各Activityにそれぞれ固有のIDを設定します。タスクAを例にとると、各フェーズの電力使用に当たるA01~A05と、タスク全体として設備M1を使用することを表すA00を設定しています。今回の問題では「設備M1を使用している間電力を使用する」という前提なので、A00の_DURATION_とA01~A05の合計が一致していることが確認できます。問題によっては「待ち時間などで使用電力0だが設備は占有したまま」のような状況で、両者の_DURATION_が異なる設定もあり得ます。 _SUCCESSOR_は前後関係を設定する対象のActivityを示しており、前後関係の種類と程度は_LAG_と_LAGDUR_で指定します。例えばFSは、「当該ActivityのFinishと_SUCCESSOR_で指定するActivityのStartの差が_LAGDUR_で指定する値以上」を示しています。今回の例では一つのタスクを分割したフェーズに相当するActivityは常に間を空けることなく実行されるため、_LAG_=FSE(FinishとStartが_LAGDUR_にEqual)、_LAGDUR_=0と設定しています。6行目のように、「タスクAの後3時間単位空けてタスクBを開始する」という業務的な意味での前後関係を表すのにも使用できます。また1行目のA00では、_LAG_=SSE(StartとStartが_LAGDUR_にEqual)でA01と開始が一致するように設定されていることにも注意が必要です。設定の詳細はマニュアルをご覧ください。 _ALIGNDATE_と_ALIGNTYPE_の組み合わせは_SUCCESSOR_と_LAG_の関係に似ていて、当該Activityと_ALIGNDATE_で指定した期日の間に_ALIGNTYPE_で指定する前後関係を設定します。例えば作業に着手可能になる時期や納期を表すのに使用でき、12行目では_ALIGNTYPE_=FEQ(Finishが_ALIGNDATE_=24にEqual)で「タスクB(のフェーズ5)が時刻24丁度に終了すること」を指定しています。 この設定でCLP Procedureを実行すると以下のような結果が得られ、時間に関する結果の”schedtime”とResourceに関する結果の”schedres”が出力されます。”schedtime”は各Activityをどの時間枠に割り当てるかという関心のある結果そのもの、”schedres”には例えば(今回の問題とは異なり)タスクを実行する設備にも選択肢がある場合のResourceの割り当てが出力されています。 最後に少しデータの加工が必要ですが、以下のようにガントチャートや電力波形に可視化して、諸々の条件が満たされたスケジュールになっていることが確認できます。図2 では"resdata"(表2)で指定した、「使用可能な電力総量の上限が“12”」を下回っていることが確認できます。 なお前回も記載しましたが、「ピーク値をどこまで下げることができるか?」を知りたい場合は、「使用可能な電力総量の上限」の指定値を下げて計算し、その条件を満たすスケジュールが作成可能かを調べることで下限を得ることができます。 まとめ 本ブログでは電力平準化問題を例として、CLP Procedureの使い方を見てきました。手順の中心となる入力データ準備の部分は、他のプログラミング言語で用意したものを読み込ませても良いですし、規模が小さければExcel上で作成してしまうことも可能です。SAS言語の知識も最適化の知識も最小限で、便利にスケジューリング機能が使えると感じていただけたなら幸いです。(反響があれば、設備の割り当ても考える場合など、より高度なモデリング方法についても取り上げます) サンプルコード 入力データは全てdataステップで作成しています。ganttプロシジャはclpプロシジャの結果である"schedtime"をほとんどそのまま使用できます(今回はグループ化の処理だけ追加しています)。使用電力の棒グラフについては、今回説明していないデータ加工が多少必要になるため、ソースコードからは割愛しています。 data res; input _RESOURCE_ $ _CAPACITY_; datalines; M1 1 M2 1 El 12 ;  

Analytics
0
電力平準化問題に対するSASのアプローチ(1)

はじめに 2022年も半ばを過ぎましたが、今年は何かと電力需給関係の話題を耳にすることが多くなっています。まず3月下旬には、直前に発生した福島県沖地震の影響で火力発電所が停止したことと寒波が重なり、東京電力と東北電力の管内で電力需給ひっ迫警報(予備率3%以下)が発令されました。そして6月下旬にも想定外の猛暑により、東京電力管内で電力需給ひっ迫注意報(予備率5%以下)が発令されています。事業者の皆様にとっても、政府からの節電要請など対応の必要な課題の一つではないでしょうか。 さて、本ブログでは製造業のスケジューリングを例にとって、使用電力の平準化(ピーク時間帯をシフトする、またピークそのものを下げる)問題に対するSASのアプローチをご紹介します。そもそも一般的なスケジューリング問題は数理最適化問題として扱えることが知られていますが、電力平準化問題も同様の枠組みで解決可能です。数理最適化によるスケジューリングは事例も豊富で歴史もある分野なのですが、通常の最適化エンジンを使用したスケジューリング問題のモデリングには背景にある数理最適化の理解が必要不可欠で、経験の無い方にとっては中々手を出しにくい代物というのが実情です。一方SAS Optimization(またはSAS/OR)にはスケジューリング問題専用の機能があり、CLP Procedureにフォーマットに従ったデータを与えるだけで、ほとんど数理最適化の理論を意識することなく簡単にモデリングすることができます。SASにはあまり最適化のイメージは無いかもしれませんが、本ブログをきっかけに意外と便利な機能が揃っていることを知っていただけたら幸いです。 問題設定 本ブログのスケジューリングで対象にするタスクとは、製造業における一連の生産プロセスのように、一度開始すると所定時間まで途中で中断することのできない作業のまとまりを指し、その間継続的に電力を使用するものとします(タスクごとに使用電力の推移がどうなるかは、過去の実績や予測としてデータ化されている必要があります)。 そして「使用電力を平準化する」とは、非常に単純に表現すると図1のように、使用電力の大きいタスクの時間的重なりをできるだけ解消してピークを下げることです。もちろん現実の問題では、設備の数や納期など様々な制約が存在するので、それらを考慮したスケジュールを作成する必要があります。 では次に、スケジューリング問題として扱いやすくするため現実の問題に対して行う、二つの側面からの近似を説明します。一つ目は時間軸に関する近似で、最小の時間単位を決めてその単位に粒度を丸めます。例えば30分単位で1日分のスケジュールを立てる場合、各タスクの所要時間も30分単位に切り上げて丸めて、「1日分48個の時間枠のどこからどこに割り当てるか」という処理を行うようにします。もう一つは電力波形に関する近似で、もとの波形を階段状に近似します。階段状の近似では、実際の電力波形の傾向が変わるなどキリの良い時点で分割して(フェーズに分割)、各フェーズの使用電力は常に期間中の最大値と同じとみなすような近似を行います。30分単位のスケジューリングを行う場合は、フェーズの所要時間も30分単位になるよう切り分けます。ここでは実際の電力波形を四角いブロックで覆うように近似していますが、もとの波形から多めに余裕を見て使用電力を設定している状況に該当しますので、このシミュレーションで電力ピークを削減できれば、実際にはもっと大きく削減できる可能性があるということになります。「時間軸はどれくらい細かく設定するか」や「タスクを何フェーズに分割するか」は、最終的なスケジュールの精度に影響しますので、問題の設定者が処理時間(細かくすればするほど計算の処理時間は伸びる)との兼ね合いで決定していく要素になります。電力に限定すると、電力会社の集計が30分単位なので、30分単位のスケジューリングには妥当性があります。 このような設定のタスクが複数存在してそれぞれのタスクを実行可能な設備が決まっている場合に、「各タスクをいつ開始するか」を上手く調節して、使用電力合計のピークが所定の上限を超えないようなスケジュールを作成することが今回の目的です。 本手法で行うのは与えた使用電力の上限を超えないスケジュールを作成することなので、いくらまでピーク値を下げられるかは自動的には求められません。通常は業務的に意味のある目標値を指定しますが、「ピーク値をどこまで下げることができるか?」を知りたい場合は、電力上限の指定値を変えて複数回実行することで求められます。指定値が厳しすぎて実行可能なスケジュールが無い場合は解なしと出るので、そこに至るまで少しずつ指定値を下げて再実行する、もしくはそのような処理を自動で行うシステムを実装します。 以下はある程度複雑な問題(30分単位1週間分、10設備、20タスク、上限10kW)を解いた時の結果イメージです。弊社では実際のプロジェクトでも使用電力平準化の問題に取り組んだ事例があり、階段状近似によって実際より各タスクの使用電力を過大評価している分を加味しても、最適化によって作成したスケジュールの方が実績よりピークが低くなることを示せました。 次回はサンプル問題でCLP Procedureの使い方を詳しく説明します! まとめ 最後に電力平準化問題のビジネスインパクトについてですが、この問題で行っているのは使用電力のピーク値の削減で、使用量そのものを削減している訳ではない(合計すると同じ)ことに注意が必要です。電力会社との契約はピーク値に基づいて決まるため、それを小さくすることができれば一定のコスト削減効果はあります。また契約によっては時間帯によって料金が異なるため、高い時間帯からピークをずらせればその分だけのコスト削減も見込めます。ただし事業規模にもよりますが、この両者を総合しても、電力平準化だけで十分な投資対効果を得るのは難しい可能性もあります。一方、節電要請への対応はコストだけに還元できない社会的意義もあり、今後のディマンドレスポンス進展や、既に今冬にも予想されている電力ひっ迫への対応など、昨今の不安定な情勢へのBCPの一つとして十分に検討に値するテーマであるとも考えています。また同じような考え方で、より利益に直結するスケジューリングを検討することも可能です。 SASでは既存のユーザー様に対するライセンス追加や活用方法のアドバイス、既存・新規関わらずドメイン知識の豊富なコンサルタントによるプロジェクト化の支援など幅広く受け付けておりますので、ご興味を持たれた方は是非ご連絡ください。

Analytics
Alexey Vodilin 0
5 pillars for a successful DataOps strategy

Over the years, technologies for data access, data transformation, building machine learning models and decisioning have proven their value and become a must-have for a data-driven organization. These technologies belong to the data processing layer, everything that resides in the blue lower semi-circle in the diagram. What DataOps adds, in

Analytics | Learn SAS | Students & Educators
見習いデータサイエンティストが思うキャリアの選び方 【アナリティクスを活用するキャリア: SAS Japan】

アカデミア向けにアナリティクス・データサイエンスのキャリアを紹介するイベント「SAS アナリティクス・キャリアシンポジウム」において、SAS Institute Japan 株式会社 コンサルティングサービス統括本部のクラウス 舞恵瑠 氏が講演しました。本イベントは、「データサイエンティストになりたい」と考える学生が業務内容やキャリアをイメージできるようになることを目指し、2021年12月22日(水)に開催されました。前回の記事はこちら。 「大学院のときに学会に参加し、『もっと数学をやりたい』と気づいたときには、すでに就活が終わっていました…」と振り返るクラウス氏は、大学院ではオペレーションズ・リサーチを専攻していました。「やりたいことが分からないから」という理由でコンサルティングファームに就職し、システムの導入支援の業務につきましたが、在学中に参加した学会で芽生えた「数理的な手法で問題解決をしてみたい」という思いが強くなり、SAS Japanへの転職を決意します。 クラウス氏がSASで携わっている直近のプロジェクトのテーマは、「不良債権回収業務の回収益向上」というものです。通常、債務の返済を督促するときは電話をかけますが、人によっては訴訟に発展してしまう可能性もあります。そこで、返済状況や債務者のタイプによって督促の方法を変更したり、場合によっては債務を減額する提案をするほうが長期的には回収額が向上する場合があったりします。どのような督促・回収方法を取るのがよいのか、回収担当者の意思決定を支援するために、強化学習や最適化手法といったデータ分析を活用します。 「一般的なプロジェクトには業務フローがありますが、それぞれのフェーズにおいて必要となるスキルや知識は異なります」とクラウス氏は言います。プロジェクトのフェーズは①現状分析/効果検証、②要件定義、③設計/開発/テスト、④導入支援、⑤本番稼働、の5つに分けられます。それぞれのフェーズにおいて、①分析とドメイン知識、②コミュニケーション、③エンジニアリング、④コミュニケーション、⑤エンジニアリングのスキルが重要になります。 分析スキルのベースには線形代数、微分、統計などの数学的な力があり、それを活用するためにSASやPythonなどのツールやプログラミングのスキルがあります。業界やクライアントの業務に関する知識であるドメイン知識は、クラウス氏によると「非常に重要なもの」ですが、一方で「学生の間に身につけることは難しい」ものです。コミュニケーション・スキルは、クライアントの課題を明確にするためにヒアリングを実施し、また、プランや結果をクライアントにフィードバックするための資料を作成し、わかりやすく説明するためのスキルです。エンジニアリング・スキルは、参画するプロジェクトにもよりますが、GithubやSQLなどのテクノロジーを扱う技術が求められる傾向にあります。このうち、分析スキルは大学の授業などを通して、コミュニケーション・スキルはゼミなどを通して学生のうちに身につけることができそうです。 「これらのスキルをすべて伸ばしていくことはもちろん望ましいですが、私の現在の課題としては、より高度な分析スキルを身につけることです。そのためには、独学、勉強会、YouTubeなどさまざまな勉強法がありますが、一番大切なのは実務経験だと考えています」とクラウス氏は述べます。「学生にとっては実務経験を得ることは難しいですが、就職したあとに積極的に実務に携わり、経験を通してスキルを向上させていく意欲が大切です」と学生にエールを送りました。

Advanced Analytics | Analytics | Cloud | Data Visualization | Machine Learning
Carlos Hernández 0
SAS Viya, transformar los datos en insights para tomar mejores decisiones

Las organizaciones están bastante conscientes de que las cosas pueden cambiar radicalmente en cuestión de semanas. La experiencia de los dos últimos años les ha hecho reconocer la necesidad de tener la capacidad de tomar decisiones inteligentes a partir de datos confiables que puedan llevar a resultados positivos.   En este

Advanced Analytics | Analytics | Artificial Intelligence | Cloud
Tapan Patel 0
2 years in: SAS and Microsoft partnership continues making waves

In June 2020, we announced our strategic partnership with Microsoft to help our joint customers address their most critical analytical challenges with SAS® Viya® on Azure. In honor of two years together, we’re highlighting some of our biggest milestones, favorite stories and impressive results. Better Together In June 2020, we announced our

Analytics | Students & Educators
0
本当の原因は何か?:因果効果を求めるために必要な条件

はじめに  前回のコラムでは、因果関係を考えるにあたり潜在アウトカムという概念を導入し、それを用いて個人と集団における介入の因果効果を定義しました。因果効果を示す指標 (causal measures) はそのスケールごとに様々なものがありますが※1、最も頻用されるのは介入を行った場合と行わなかった場合の潜在アウトカムの差分を取ったものです。すなわちある個人iにおける因果効果を  Yi^(a=1) - Yi^(a=0)  とし、集団における平均因果効果を  E[Yi^(a=1) - Yi^(a=0)]  と考えます。   詳細については後述しますが、この個人における因果効果は 潜在アウトカム Yi^(a=1), Yi^(a=0) のいずれかしか観測がされないため、定義することはできても一般にその値を求めることは出来ません。これは潜在アウトカムを用いるRubin流の因果推論における根本的な問題として知られています。しかし、集団における平均因果効果については識別条件 (identifiability assumptions) と総称される以下の3つの仮定の下ではその値を推定することが可能です。  一致性 (consistency)   交換可能性 (exchangeability) ※2  正値性 (positivity)  今回のコラムでは、これらの仮定について紹介・解説を行います。    補足   参考文献  

Analytics | Students & Educators
0
本当の原因は何か?:潜在アウトカムによる因果効果

はじめに   データに基づいた意思決定が必要とされる場面が近年ますます増えており、そういった際には、データからいかに因果関係を導き出すかが非常に重要な問題です。”因果”を統計学的に捉え、いかにしてそれに迫るかは、統計的因果推論として体系化がなされています。SAS Blogでは、前回の記事からこの統計的因果推論に関する連載コラム・シリーズが始まりました。  因果関係を統計学的に導くことを目的とする統計的因果推論には、主に2つの枠組みがあります。1つは潜在アウトカムを用いるRubin流の考え方、そしてもう1つが構造的因果モデルを用いるPearl流の考え方です。これら2つの考え方は相反するものではなく、Pearl流の因果推論では、ある変数の特徴とそれらの関係を記述するために構造的因果モデル  (SCM; Structural Causal Model) が用いられています。このSCMには対応するグラフィカル因果モデルがそれぞれ存在しており、その際に使用されるのが有向非巡回グラフ (DAG; Directed Acyclic Graph)※1です。このDAGはRubin流の因果推論においても、変数間の関係を視覚的に理解するために補助的に利用がされています。本コラム・シリーズでは前者の潜在アウトカムの枠組みでの因果推論について紹介を行います。今回は特にその根底となる潜在アウトカムについて、また、それを用いた因果関係の定義について説明します。  ※1 補足資料を参照    相関関係と因果関係   相関関係とは、ある2つの変数において、一方が増加するにつれてもう一方も増加(減少)する傾向があるという双方向の関係を意味しています。これに対し因果関係とは、ある2つの変数のうち、一方の操作可能な変数(原因)の値を変化させる(介入を行う)と、もう一方(結果)の値が変化するという、原因から結果への一方向的な関係です。これらの関係の違いを理解することは社会生活を送る上で非常に重要です。例えば、相関関係がある有名な例として、年収と血圧の関係があります。この2つの変数の間には正の相関関係(年収が高くなるほど血圧が高い傾向)があります。しかし、年収を上げるために血圧を上げる(Ex, 暴飲暴食を行う)ことは妥当でしょうか。もしくは、血圧を下げるために年収を下げる(Ex, 転職をする)ことは受け入れられることでしょうか。おそらく多くの読者の方の意見は「No」であるかと思います。この例からも察することができるように、相関関係と因果関係の存在とその方向というものは必ずしも一致しません。また、これらの関係を混同することは大きな不利益につながる可能性があります。上記の例であれば、真には血圧の増加は年収増加に対して因果的な効果を持たないのにも関わらず年収を上げるために無駄に暴飲暴食を行ってしまうことで、結果として不健康につながる可能性があります。   このように興味の対象が因果関係、因果効果である場面は比較的多く存在します。統計的因果推論 (causal inference) とはこれらを形而的、哲学的にではなく、統計学的に考える学問分野です。また、単に因果推論と言われる場合もあり、コラム中で単に因果推論と呼称した場合には、統計的因果推論を意味していることにご注意ください。データから因果効果を推定するために「傾向スコア」を用いた手法など様々なものが用いられています。しかし、これらの手法は適用さえすれば因果効果を適切に推定することができるというわけではありません。因果推論を行うにあたっては因果関係を検討する集団はどういった集団であるか、考える因果効果はどのような介入の効果であるかといった因果的な疑問 (causal question) を明確にすることがまず重要です。その上でデータへの手法の適用があります。また、それぞれの手法は異なる仮定を必要とするため、無条件で因果効果を求めることはできず、その仮定が目の前にあるデータに対してどの程度成立するものであるかといった議論も必要です。 加えて、推定する対象が手法間で異なるといった点や真の関係をゆがませる要因は何が想定されるのかなど、他にも様々な事を考慮する必要があり、慎重に議論を行っていくことが大切です。本コラムでは潜在アウトカムの枠組みでの因果推論の理論(考え方)と、一部の因果効果の推定手法についてのみ取り扱いますが、現実的にはそのような総合的な議論が重要です。    本コラムにおける用語   今回のコラムでは、心臓移植とその5日後の生存の間の因果関係を具体例として考えます。すなわち、心臓移植という介入が5日間の生存というアウトカムに対して、因果効果を持つかどうかを検討します。医療の分野では原因として考える要因を介入 (intervention) や処置 (treatment) 、曝露 (exposure)、結果変数のことをアウトカム (outcome) と呼ぶことが一般的であり、このコラム・シリーズでは、具体例として主に医療関連の話題を取り上げるため、基本的にはこのような呼称を行います。経済・金融系の分野では、因果効果があるかどうか検討したい要因が施策等である場面があるかと思いますが、因果推論の理論に関して変わりはないので、本コラムの例を読者の方がそれぞれ抱えている疑問に置き換えて考えるとよいでしょう。ただ、今後紹介する因果推論に関する様々な仮定の妥当性や分析に用いられるデータの特徴は、それぞれの分野によって異なりますので、その点ご理解ください。    潜在アウトカムによる因果効果   それでは早速、例を用いて潜在アウトカムとは何か、因果関係とは何かを考えていきます。具体的には心臓移植(介入)が5日後の生存(アウトカム)に対して因果的な効果があるのかどうかを考えます。この関係を検討するために、まずゼウスとヘラというある2人に対し、ともに介入を行うことを想定し、何らかの方法で以下の結果が得られたものとします。  ゼウスは1月1日に心臓移植を受けると、その5日後には死亡している。 ヘラは1月1日に心臓移植を受けると、その5日後は生存している。   このもしもの結果(介入を行う場合の結果)が分かったとき、心臓移植はゼウスとヘラの5日間の生存に対してそれぞれ因果効果を持つと結論付けることは可能でしょうか。一見すると、ゼウスは心臓移植後に死亡し、ヘラは生存していますので、ゼウスに対してはnegativeな因果効果(心臓移植により死亡した)、ヘラに対してはpositiveな因果効果(心臓移植により生存した)があったように見えます。しかし、その結論は正しいのでしょうか。もしかすると心臓移植を受けずとも、ゼウスは5日後には亡くなり、ヘラは生きていたのかもしれません(結果は変わらなかった)。もしくは心臓移植を行わなければ、逆にゼウスは生存し、ヘラは亡くなっていたのかもしれません。つまり因果効果があるかどうかについては、この結果だけでは判断することはできません。   では、どのような状況であれば因果関係かどうかを判断することができるでしょうか。その1つのアイディアがもし介入を受けなかったらどのような結果が得られたのかを考えることです。実際にはゼウスもヘラも介入を受けるか受けないかのいずれかしか取り得ないため、必ずどちらか一方の結果は現実的には得られない(反事実)ものとなってしまいますが※2、先ほどと同様に何かしらの方法でその場合の結果を知ることができたと仮定し、それぞれの場合の結果を比較するわけです。そして、それらの値が異なるのであれば介入の因果効果があるとし、同一であるのならば因果効果がないと判断します。   ゼウスとヘラに関しては、以下のようなもしもの結果が得られたとします。  ゼウスは1月1日に心臓移植を受けないと、その5日後は生存している。 ヘラは1月1日に心臓移植を受けないと、その5日後は生存している。   先程の結果も含め、介入を受ける場合と受けない場合の結果をまとめたものが下図です。   介入を受けない場合の結果が得られたことにより、心臓移植はゼウスに対しては5日後の生存に対し因果効果を与えた(ネガティブな効果)、ヘラには因果効果を与えなかった(介入があってもなくても結果は同じ)と判断することができます。おそらく、この判断に関しては読者の方々も特に異論はないかと思います。この例のように、ある介入を受けた場合のもしもの結果のことを潜在アウトカム (potential outcomes)

Advanced Analytics | Analytics | Data Management | Data Visualization
Ernesto Cantu 0
Acelerando un futuro analítico para manufactura en América Latina

A medida que nos acercamos a un nuevo año, los temas de productividad y optimización para operar en un  contexto volátil e incierto seguirán siendo una prioridad para los ejecutivos de todos los sectores de la industria, y manufactura no es la excepción. Los datos son un aliado importante para garantizar la resiliencia

Advanced Analytics | Analytics | Artificial Intelligence | Cloud | Data Management | Data Visualization | Machine Learning
Charlie Chase 0
How life science and health care supply chains can adapt to disruption

Robert Handfield, PhD, is a distinguished professor of Supply Chain Management at North Carolina State University and Director of the Supply Chain Resource Cooperative. In an episode of the Health Pulse Podcast, Handfield gave his views regarding the challenges health care and life science companies have encountered over the past two years

1 2 3 125

Back to Top