Analytics

Find out how analytics, from data mining to cognitive computing, is changing the way we do business

Analytics
0
アジサイと書いて統計学と機械学習と読む

この時期の私の楽しみは、散歩の途中でかわいらしい色とりどりのアジサイの花を眺めることだ。アジサイは、「集まる」や「寄せ集める」という意味があり、花弁がいくつも集まっている咲き姿に由来しているそうだ。別名「七変化」とも呼ばれており、土の性質によって花色が変わるのが特徴。土が酸性だとブルー系、中性からアルカリ性だとピンク系になるそうだ。面白いことに、ブルーのアジサイをアルカリ性の土に植え替えると薄紫色のアジサイに変化するそうだ。 「統計学と機械学習の違いは何か」という質問を受けることがある。土の性質で色が変わるアジサイのように、機械学習と統計学も同じような関係ではないかと思う。両者の目的は似ているが、ビッグデータと高度な計算能力という土俵の違いが機械学習の発展に大きく寄与したのは間違いない。ただ、機械学習の歴史は比較的新しいが、統計学がなければその発展は考えにくい。例えば、決定木分析は機械学習が流行る前から統計学の手法の一つだったが、機械学習の進展とともに進化してきた。ちなみに決定木分析は樹形図の形式で結果を出力し、そのため初心者でも理解しやすい分析手法の一つ。SASでは、機械学習をはじめとして、ニューラルネットワーク、AI関連のトレーニングコースが年に数回開催されている(SASトレーニングコース)。 ※Google Trendによると日本での検索数は、2016年当りから交差する形で機械学習が統計学を上回るようになった。機械学習が統計学より広まったのは、ビジネスパーソンであろうが消費者であろうが、意思決定の場面で使われる頻度や処理速度に関連があると思う。 2024年7月初旬 相吉

Analytics
Alison Bolen 0
Growing up quantum in an AI world

Bill Wisotsky’s interest in quantum mechanics began in graduate school more than 20 years ago. For Wisotsky, a Principal Technical Architect at SAS, it was one of those ideas that takes root in your mind and doesn’t let go. As Wisotsky’s career progressed from studying behavioral neuroscience and teaching statistics

Analytics
Jonathan Moran 0
3 reasons why marketers need SAS® for customer analytics

Customer analytics is becoming imperative for organizations that desire to create and provide personalized and satisfying customer experiences. To understand and anticipate customer needs, preferences and behaviors in a fast-moving marketplace, organizations must make sense of unstructured data, apply industry-specific data and analytics techniques, and optimize every customer-level decision and

Advanced Analytics | Analytics | Artificial Intelligence | Customer Intelligence | Data Management
0
保険業界向けインタラクティブセッション「新しい保険ビジネス創造に向けた事例と成功要因」を開催!【SAS Institute Japan】

2024年5月31日(金)、SAS Institute Japanは、「保険業界向けインタラクティブセッション 新しい保険ビジネス創造に向けた事例と成功要因」 を六本木ヒルズ森タワー11階のSAS Institute Japan本社で開催した。 開会挨拶 保険業界においても顧客ニーズは多様化、高度化している。たとえば、生保ではウェルビーイングのような包括的な顧客ニーズを充足することが求められている。そして、顧客ニーズを充足するためのエコシステムが台頭し、保険商品がエコシステムに組み込まれ、顧客の生活の中でフリクションレスに保険や関連サービスが提供されるようになっている。今、保険会社はどのように新しい商品・サービスを開発し、マーケティングを実行すべきなのか。本イベントでは、保険業界で実際に多数のイノベーションやCX変革に関わっている有識者をゲストに迎え、今取り組むべき課題やその実際を議論していく(SAS Institute Japan カスタマアドバイザリ事業本部 原島 淳氏)。 セッション1:保険業界におけるビジネスアーキテクチャの転換  まず、福島 渉氏(デロイトトーマツコンサルティング 執行役員 保険インダストリリーダー)が「保険業界におけるビジネスアーキテクチャの転換」について話した。  「これまで世界の保険業界において、ランキング上位企業の顔触れは大きく変わってこなかった。100年以上の歴史を持つ保険会社がランキング上位を占めている。それは従来の保険会社はバリューチェーンの各機能を内製化しており、それぞれの知見や能力が競争優位性の源泉であり、また参入障壁になっていたからだ。大手企業は、潤沢な資本を背景とした価格形成力を持ち、販売網を張り巡らせ、そして高い引受・査定能力により収益を維持してきた。 しかし、今日ではバリューチェーン各機能の分立と共有化が進んだことで、この構造が崩れ始めている。保険会社のビジネスモデルは多様化しており、また水平横断的機能提供を狙うプラットフォーマーが出現している。各保険会社は自らの強みを活かしながら、フィナンシャル&ヘルスマネジメント型、経済活動のあらゆるリスクをカバーするフルスペック型、ドメインフォーカス型、もしくはプダクトファクトリー型といったビジネスモデルを選択していくことになると予測する。また、機能特化/集約型プラットフォーマーとして、データアナリティクス、カスタマーエンゲージメント、キャピタル&インベストマネジメント、ITテクノロジーのプラットフォーマーが出現してくるだろう。たとえば、資産運用プラットフォームBlackRock、”Technology as a Service”のOneConnectといった企業はそれに当たる。保険会社はこういったプラットフォーマーを活用することも重要だ。  このような潮流を受けて、保険業界のビジネスアーキテクチャは変化している。これまでは、単一の商品を効率的に販売する”代理店モデル”が主流だった。しかし、これからは商品・サービスとチャネルをターゲット顧客に応じて最適な形で組み立てていくことが重要だろう。前述のような機能プラットフォーマーが提供する”モジュール化”された機能を自社の商品・サービスやチャネルと組み合わせることで新しいビジネスモデルを定義し、多数の顧客セグメントに効率よく価値提供することも可能だ。たとえば、よく知られるエンビデッド保険や、シンガポールIncomeのSNACKの革新的なサービスもその一例だ。  今日の保険業界ではスピーディーなイノベーションが強く求められている。イノベーションを加速させるには、モジュール化された機能を組み合わせることで、商品・サービスをスピーディーにプロデュースする能力が重要と言える。これからの保険会社に求められるのは、ブランド価値とビジネスケースの仮説構築力と、それをもとに商品・サービスをアジャイルで構築できる新しいテクノロジー基盤、そこで仮説検証を高速で廻せる業務プロセスである。今日の保険会社には、商品・サービス開発、マーケティング、テクノロジー、そして全体のガバナンスの各領域で、”モジュール”を活用したスピーディーな競争優位性の創造が求められている。」 セッション2:三井住友海上におけるCXマーケティングとデータ活用の取り組みについて  では、保険会社では実際にどのように商品・サービスを開発し、マーケティングを行っているのだろうか。続いて、佐藤 祐規氏(三井住友海上 CXマーケティング戦略部 データマーケティングチーム長)が「三井住友海上におけるCXマーケティングとデータ活用の取り組みについて」と題して、実際の取組みを紹介した。  「言うまでも無く、保険業界を取り巻く環境は大きく変化した。お客さまが自ら必要な情報を選択する時代では、事故補償時だけの関係性から脱却しなければならない。CXマーケティング戦略部では、お客様ロイヤルティ大手損保No.1を目指している。このためには、顧客接点を増強すること、そして、データ分析やリサーチを通してお客様の解像度を高め、お客さまごとのコミュニケーションを実施することで、新規獲得手法を高度化し、またお客さまの期待を超える体験価値を提供することが重要だ。そして、そのためにはデータ分析やデータ活用が欠かせない。  当社ではマーケティング領域のデータ活用を強化しているが、いくつかの取組事例を紹介する。まず、ドラレコ付き自動車保険のクリエイティブ開発の事例だ。従来、クリエイティブ開発は商品所管部門が担当しており、モノの視点(機能的価値)からの価値訴求が多かった。しかし、実際にお客さまへの訴求を行っている代理店への調査を行ってみると、お客さまは加入後の体験とそれによる安心に価値を感じていることがわかった。そういった体験価値の視点からプロトタイプを作成し、ターゲット層にアンケート調査を行うことでブラッシュアップを行い、より評価の高いクリエイティブを作成することができた。 この事例のように、消費者調査を行なうことで顧客のニーズや求められる価値を理解した上で、商品・サービス開発を進めている。お客さまに選んでいただくためには、良い商品を開発するだけでなく、当社の認知度や好感度、さらに契約体験や事故体験も重要な要因となる。それぞれの体験や認知が契約にどの程度寄与するのかも分析を行っている。 こういった分析を通してマーケティングミックスを最適化するために、弊社ではCDP(Customer Data Platform)を構築し、お客様起点で属性、契約、行動、調査、事故の情報を統合、活用している。この情報は代理店にも還元していて、代理店向け営業支援システムにNBA(Next Best Action)情報を配信している。  今後の方向性として、保険会社はプロダクト中心の発想から抜け出し、カスタマージャーニーにおける価値を中心に考える必要がある。顧客との接触頻度を拡大すべきだが、無意味な拡大は逆効果で、適度な距離感を持って、有用なコミュニケーションを行っていくことが重要だ。そのためにはお客さまの文脈を押さえた(”ジョブ理論”にもとづく)コミュニケーションが欠かせない。現在、ChatGPTを活用しながら、ジョブ理論にもとづくクリエイティブ開発を進めているが、こういった施策を通してCX向上を目指したい。保険会社の商品・サービスは今後拡大していくだろうが、差別化の最大のポイントはCXだと考えている。」 セッション3:保険イノベーションをサポートする新しいSASテクノロジと事例  こういった保険業界のイノベーションやCX高度化に求められるテクノロジーとは何か。原島 淳氏(SAS Institute Japan カスタマアドバイザリ事業本部)が「保険イノベーションをサポートする新しいSAS」と題して、SASが提供するテクノロジーと海外でのその活用事例を話した。  「保険会社は今、新しい商品・サービスとそのマーケティングモデルをスピーディーに創造していくことが求められている。競争力の源泉としてデータとAIを活用し、また新しいマーケットプレイスやテクノロジー企業が提供する”モジュール”との連携も重要だ。 SASはデータから価値実現のプロセスをEnd-to-Endでサポートし、アジャイルにも対応している。また、あらゆるシステム/モジュールとリアルタイムで統合可能なオープン性を持つ。SASを活用することで、データ・AIを活用した判断をカスタマージャーニーに組み込み、顧客体験を最適化できる。たとえば、外部ウェブサイトの顧客行動をリアルタイムで捕捉・分析し、最適な保険・サービスを最適な保険料で提案。申込があれば本人確認を行い、自動引受査定を行い、スピーディーに契約のご案内を行う、といった形で、業務横断のデータ・AI活用が可能だ 保険業界においてもSASを活用した事例は拡大している。その中から、(1)新しい商品・サービスをスピーディーに創造している事例、(2)優れたCXを提供する顧客接点を構築している事例、(3)業務横断の高度なデータ・AI活用を実施している事例を紹介したい。 まず、(1)海外ダイレクト保険プラットフォーマーでは、多数の外部パートナーに対し、APIを通して豊富な商品とSASで開発されたカスタマーエンゲージメントプラットフォームを”モジュール”として提供する。このプラットフォームはスケーラブルで、かつスピーディーに拡張できる点が特徴であり、多数の外部パートナー向けのエンベデッドの保険の提供や、金融・小売といった多数の販売パートナーとの提携によるマーケティングモデルの展開をサポートしている。次に、(2)カナダSun Lifeでは、デジタルアドバイザ”Ella”がアマゾンエコーなどのインターフェースを通して顧客のライフスタイルをサポートしながら、各種データにもとづいて健康や資産運用のための様々なナッジを提供している。(3)海外保険会社の中小企業向け保険のアンダーライティングでは、引受リスクだけでなく、保険+予防予後サービスを含むトータルの顧客LTVを加味して最適な提案(NBO=Next

Analytics
Hyeshin Hwang 0
더 나은 세상을 만드는 방법

공공 고객 세미나 통해 공중보건과 공공사회서비스 개선을 위한 해법 제시 SAS코리아는 지난 5월 23일과 24일 양일간 공공 부문 고객들을 대상으로 ‘공중보건 전문가를 위한 SAS Public Health 세미나’와 ‘공공사회서비스 전문가를 위한 SAS Social Services 세미나’를 JW메리어트 호텔에서 개최했습니다. [사진1] 공중보건 전문가를 위한 SAS Public Health 세미나 장면 소외 계층 없이 전

Analytics | Data for Good | Learn SAS | SAS Events
0
SAS Hackathon Boot Camp/ 7月18日 SAS Innovate Tokyo にて開催

  SAS Hackathon Boot Camp が SAS Innovate Tokyo に登場 2024年7月18日からSAS Innovate Tokyoが東京丸の内で開催されます。参加される皆さんは、SAS Hackathon Boot Campにもぜひご参加ください。参加は無料です。この Boot Campは、提供されるダイナミックなAI環境の中で、"経験豊富な問題解決者" である皆さんが一丸となって課題に取り組むことができるプログラムとなっています。多様な専門的バッグラウンドを持つ皆さんのご参加をお待ちしてます。このプログラムは、与えられた課題に取り組む中で、融資業務の評価を実際に体験することができるものとなっています。金融業界でのバックグラウンドの有無にかかわらず参加いただけます。 プログラム Boot Campのプログラムは、信用審査モデルにおいて、特に性別、年齢、人種、場所、その他の潜在的な要因に関連する、"隠れたバイアスの蔓延"という問題に対して取り組む内容となっています。参加者には、そのようなバイアスが存在する可能性のある現実世界のシナリオをシミュレートするデータセットが提供されます。ゴールは、そのような既存のバイアスを持ち続けず、これ以上増やさないためにも、フェアな信用審査モデルを新たに作成することにあります。利害関係者とのコミュニケーションを可能にするための、データセット内の潜在的な問題の評価を支援するダッシュボードの作成ももう一つのゴールです。 オプション 参加者はローコード、ノーコード開発のどちらかを選択することができます。また、プログラムの課題を通して、SAS Viya 上での、AI、アナリティクス、オープンソースツールの組み合わせを体験していただけます。 ユースケースオプション: 信用審査モデリングデータのバイアスの検出 (ローコード) 一度に 1 つのダッシュボードで信頼性の確認ができる: 倫理的なデータ可視化の課題 (ノーコード) 必要な準備 インターネット環境に接続可能なご自身のPCをご持参ください。 サポート SASから提供されるものは以下です。 Azure上で実行され、Intelによって高速化されたSAS CloudでのSAS Viyaへのアクセス 問題の説明とデータ SASのメンターによる課題取組み中のコーチング 会場でのWi-Fi チーム チームは2〜4人で編成されます。歓迎されるスキルは以下です。 公平性を判断するための批判的思考 データに存在するさまざまなタイプのバイアスに関する認識 データインサイトを解釈して伝達する能力 複雑なコンセプトを伝えるための強力なコミュニケーションスキル

Advanced Analytics | Analytics | Artificial Intelligence | Data Management
Héctor Cobo 0
IA y Analítica Avanzada capaces de reducir amenaza de abuso infantil hasta en un 75%

Los depredadores utilizan plataformas y técnicas cada vez más sofisticadas para ocultar su actividad y evadir la detección. México posicionado como el primer lugar a nivel mundial en producción y distribución de pornografía infantil. En 2022, México registró más de 815 mil casos de posibles abusos en línea, según el

Analytics | Artificial Intelligence | Customer Intelligence | Fraud & Security Intelligence | Machine Learning | Risk Management | SAS Events
Carolina Pereira 0
FEBRABAN TECH 2024: confira agenda de palestras do SAS

Neste ano, mais uma vez o SAS participará do evento FEBRABAN TECH, que acontece de 25 a 27 de junho, em São Paulo, no Transamérica Expo Center. Levaremos ao evento as últimas novidades de dados e IA para o setor financeiro, com uma novidade: dez palestras no estande sobre os

Analytics
Hyeshin Hwang 0
2024 SAS 해커톤(Hackathon) 대회 참가자를 모집합니다!

전문가들과 소통하며 창의적인 아이디어로 세상을 변화시킬 수 있는 기회! 새로운 도전과 혁신을 위한 ‘SAS 해커톤 대회’가 올해도 그 막을 열었습니다. 데이터 및 AI 부문 선도기업 SAS가 5월 30일부터 8월 30일까지 SAS 해커톤 참가자를 모집합니다. SAS 해커톤 대회는 개발자, 데이터 과학자, 학생, 스타트업, SAS 고객 및 파트너 등이 참여하여 클라우드 환경의

Analytics
0
タンポポの生存分析をしてみたい

タンポポは、生き生きとしたかつとても響きの良い、好きな日本語の一つである。 語源は、江戸時代頃までは「鼓草(ツヅミグサ)」と呼ばれていたものの、花のかたちが太鼓に似ている、または太鼓を叩くポンポンという音を連想させるとかで、たんぽぽになったという説が有力らしい。英語では「dandelion」と、たんぽぽの花の形がライオンのタテガミに似ているからかと思いきや、ギザギザの葉をライオンの歯に見立てたことから由来しているそう。 タンポポは、春に花を咲かせて夏には枯れてしまう短命のイメージがあるが、実はとても長生きする草本だそうだ。花が散った後、綿毛のタネを飛ばして(あのひらひらとした傘の形の綿毛で運が良ければ100キロ先まで飛ぶそうなので驚く。もちろん大概は数メートルのはずだが)、葉を枯らしてしまうが、しっかり根は残っていて(だからうちの庭の草むしりが大変だった)、そして翌年の春になるとまた茎を立ち上げて葉を伸ばし、花をつける。毎年それを繰り返し、根株が死なない限り何年でも生き続け、寿命は、10年から15年程度だそうなのでこれまた驚きである。 話が変わるが、統計学には生存分析、あるいは生存時間解析というのがあり、生物の死亡や機械の故障など寿命が分析対象で、医学や社会科学の多くの分野に利用されている。医学研究の例を挙げると、ある時間を過ぎて生存する人々の割合はどの程度か、生き残った人々はどの程度の割合で死亡するのか、特定の状況または特性が生存確率にどのような影響を与えるのか、などが挙げられる。SASでは6〜8月に生存時間解析、予測分析、といった講座が開設されているので(SASトレーニングコース )、「寿命」に興味関心がある方はぜひ受講してみて頂きたい。 2024年6月初旬 相吉

Analytics | SAS Events
0
SAS Hackathon Boot Camp in Las Vegas / チーム SHIONOGI 参加・入賞報告

4月16日-19日に開催されたSAS Innovate in Las Vegasにて、SAS Hackathon Boot Campが行われました。 日本からは塩野義製薬様が参加され、見事3位入賞いたしました。🎉 本記事では塩野義製薬様のチャレンジの様子や、いち早くSAS Viya Workbenchを利用した感想をお伝えします。 また、7月17-18日に開催予定のSAS Innovate in Tokyoでは、2日目にHackathon Boot Campが行われます。 ぜひこの記事を参考にし、皆様のチャレンジをお待ちしています。 SAS Hackathon、SAS Viya Workbenchに関する各種リンクは以下をご覧下さい: SAS Hackathon Boot Camp in Tokyo  (SAS Innovate Day2):Here ※参加登録時、ハッカソン参加希望をチェックください。 SAS Hackathon:Here SAS Viya Workbench:Here チーム SHIONOGI ? 今回SAS Hackathon Boot Campへ参加したのは、データサイエンス部の4名です。 参加された4名は、医薬品の有効性・安全性を確かめる臨床開発をはじめ、医薬品の研究~販売のすべてのバリューチェーンにおいて、データサイエンスの側面から業務プロセスの改革へ取り組まれています。 塩野義製薬様エントリーの背景 日頃から仮説(臨床試験/ビジネス)に対しデータサイエンスを使い向き合っていますが、3時間という限られた時間の中で普段扱わない業界・テーマへ向き合うことは、我々の実力試しが出来るいい機会と考えていました。 日々様々な業務テーマ/データと向き合い、高度なデータ活用へ取り組まれている皆さんにとって、Hackathon Boot Campはそれらの総合力と向き合う機会だったと言えます。

Analytics | Artificial Intelligence
Dan Childers 0
Time for government agencies to embed data and AI into environmental compliance

Government employees charged with monitoring environmental compliance face a downpour of information, wading through countless reports and stacks of paperwork to accomplish their mission. To help these dedicated public servants increase productivity, agencies should consider a broader set of tools to control pollution, enforce regulations and improve compliance. Although foundational

Analytics | Artificial Intelligence | Data Management
Hyeshin Hwang 0
생성형 AI에 대한 준비, 얼마나 되었을까요?

생성형 AI는 우리의 업무 환경과 사회를 변화시키고 있습니다. 사람과 기술이 상호작용할 새로운 방법을 제시하며 상상을 능가하는 속도로 영향을 끼치고 있죠. 최근 실시한 조사 결과는 생성형 AI에 대한 흥미로운 시각을 제시하고 있는데요, 기업 의사결정자들이 체감하는 생성형 AI의 해결 과제와 기회를 동시에 확인하실 수 있습니다. 대다수의 응답자는 GenAI를 통해 직원 만족도가 향상되었고(82%),

Analytics
0
ツツジのように統計学が広まってほしい

桜が散ったと思うと、いつの間にかツツジの季節がやってきた。ツツジは、4月中旬から5月中旬にかけて咲く、日本で最も親しまれている植物の一つであり、桜の散る頃から北海道から沖縄まで全国各地の様々な場所で楽しめる花でもある。歴史的には、徳川家のツツジ好きもあって江戸幕府が植栽に力を入れ、大名たちの間で庭園づくりブームが起きたとか。 さて、統計学のコースだが、多くの良質な書籍やコンテンツがあり、感心するものも多いが、しかし、入門としては物足りなさを否めない。特に、「社会人のための・・・」をうたったコースにおいては、統計学を長年体系的に勉強した者として、大学(統計学部)の授業のようなものが多く一般人にはレベルが高い印象を受ける。また、日本独自の事情やニーズに合った教材が必要ではないかと思う。 前述したツツジのように統計学が日本中に広まってほしい、データリテラシーの底上げに貢献したいという気持ちから、「統計学入門」コースを新設した。このコースは、統計の勉強をしたことがない社会人向けに分かりやすく統計の基礎を解説し、かつ実務へのつながりを意識した質問、例を盛り込むことで、統計学の概念の定着につながるように構成している。実務に統計学がどのように活用されているのかなどをより意識したコース内容となっている。また、本コースはSAS製品を使用していない方でも受講可能である。この機会にぜひ受講を検討いただきたい。 2024年5月初旬 相吉

Advanced Analytics | Analytics | Artificial Intelligence
André Novo 0
IA e analytics no setor público: uma jornada em evolução

Quando analisamos a adoção e evolução tecnológica no setor público nos últimos anos, é seguro dizer que os avanços foram exponenciais. Neste sentido, é inegável que existe um mundo antes e depois da pandemia de Covid-19. A necessidade de atendimento das demandas dos cidadãos em um contexto de distanciamento físico

Analytics | Risk Management
Luis Barrientos 0
Escasez de agua en México un desafío empresarial y financiero para los próximos 6 años: SAS

Ignorar los criterios ESG podría suponer un riesgo a largo plazo para el financiamiento de las empresas. Las decisiones medioambientales inadecuadas tomadas durante las últimas décadas han acelerado el cambio climático, lo cual ha traído consigo diversos problemas para la sociedad, entre ellas la crisis hídrica que se vive en

Advanced Analytics | Analytics | Artificial Intelligence | Data Management | Data Visualization
Amaya Cerezo 0
Construyendo el ‘Máster Data Scientist’: el jedi de los datos al servicio de la estrategia

En los últimos años, la ciencia de datos ha experimentado un crecimiento exponencial y se ha convertido en un pilar fundamental para las estrategias de las organizaciones en todas las industrias. Sin embargo, para los data scientist experimentados, el panorama del dato se encuentra  en un proceso de cambio constante.

1 2 3 142

Back to Top