Analytics

Find out how analytics, from data mining to cognitive computing, is changing the way we do business

Analytics
Luis Barrientos 0
Aplicar lo aprendido y establecer un ecosistema a medida, claves para cumplir con IFRS 17

El tiempo sigue corriendo y las empresas aseguradoras de diferentes latitudes se están preparando para cumplir con un nuevo estándar contable que entrará en vigor en enero de 2021: IFRS 17. International Financial Reporting Standard (IFRS) 17 establece los principios para el reconocimiento, medición, presentación y revelación de los contratos

Analytics | Artificial Intelligence | Machine Learning
Rhett Scheel 0
Bühne frei für KI und Machine Learning im Gesundheitswesen!

Krankenversicherung und neue Technologien – geht das zusammen? Auf alle Fälle! Und das User-Group-Treffen „Analytik in der Krankenversicherung“, das kürzlich in Leipzig stattfand, hat es unter Beweis gestellt. Diese von den Gesundheitsforen Leipzig ausgerichtete Veranstaltung ist ein sehr informatives Forum, auf dem sich analytische Fachexperten aus der Gesetzlichen Krankenversicherung (GKV)

Analytics | Customer Intelligence
Greg Heidrick 0
Retailers: is your customer experience strategy working?

Smart retailers know that omnichannel customer experience isn't just about marketing anymore.  It’s about bridging all your digital and physical channels to recognize customers wherever they are, collecting data and understanding the retail customer’s purchasing journey. By taking customer data, product data, and supply chain data - and applying predictive and prescriptive

Analytics
0
和歌山県データ利活用コンペティション参考資料(8) 都道府県を行政基盤でグループ分けする (クラスタリング )

前回の記事では、SAS Visual Analytics を用いて時系列データを扱う手法をご説明しました。第7回目となる本記事では、データをグループ分けするクラスタリングについてご紹介します。 クラスタリングとは、多様な特徴を持つデータ群の中から、似通った性質を持つサンプルを抽出しグループ化する機械学習手法です。例えば、顧客をクラスタリングし、各クラスターの特徴(年齢・嗜好等)に合わせた適切なDMを送る、などの活用例があります。本記事では、行政基盤の性質に基づき都道府県をクラスタリングします。本ブログのシリーズの第3回・第5回にて同じデータを異なる手法で分析しておりますので、併せてご参照ください。 本記事では、総務省の「社会・人口統計体系 都道府県データ 社会生活統計指標 :D 行政基盤」のデータを使用しました。   SAS Visual Analytics 8.3 におけるクラスタリング分析 from SAS Institute Japan   本例で作成したクラスターの数は5つですが、オプションから数の変更ができます。特徴量のビンの数も同様に変更可能です。 さて、今回使用した5つの変数は第3回・第5回の記事の分析で、人口増減率に影響を及ぼすとされた要素でした。スライド内クラスター2のラインをご覧ください。財政力指数は低いものの、土木費割合が高いという特徴を共有するクラスターであると読み取れます。これは、第5回の記事のディシジョンツリーを用いた分析によると、財政力が弱いにも関わらず人口増減率が高い自治体の持つ特徴でした。したがってクラスター2内の要素の人口増減率が高い傾向にあることが予想されます。また最も要素数の多いクラスター5についてですが、どのビンにおいても概ね中程度の値を取っており、平均的なクラスターであるとみなせます。このようにクラスタリングによってデータを分類し、各クラスターの特徴に着目することで、データをより分析しやすくすることが可能です。   ここで、SAS Visual Analytics におけるクラスタリングに使われている手法、k-means法の仕組みついてご紹介します。ここではn個のデータをk個のクラスターに分類するとします。 1) n個のデータのうち最初のk個をクラスターの核とし、各データを一番近い核のクラスターに属するように分割します。 2) 各クラスターの重心を求めます。 3) 各データを、それぞれが一番近い重心のクラスターに属するように再分割します。 4) 再分割されたクラスターの重心を求め、(3)の操作をクラスターに変化がなくなるまで行います。 このように、最終的に変動がなくなったクラスターに基づきクラスタリングが行われています。 以上、クラスタリングの手法についてご説明しました。引き続き本ブログのシリーズでは、SAS Visual Analytics を用いた図表・グラフの作成や統計解析の方法について紹介いたします。ぜひご参照ください。 高校生・大学生を対象とした第2回和歌山県データ利活用コンペティションへの参加も募集中ですので、奮ってご参加ください。(追記:募集は締め切られました)  

Analytics
0
和歌山県データ利活用コンペティション参考資料(7) 待機児童の有無は何によって決まるか (ロジスティック回帰)

第3回のブログでは、SAS Visual Analytics の活用例として統計解析のひとつである線形回帰を紹介しました。その続きのブログとなる今回は、ロジスティック回帰について説明します。 回帰分析は変数どうしの関係を分析することができます。そのなかでも以前紹介した線形回帰はシンプルでよく利用されますが、すべての場合において最も適当な分析手法であるとは限りません。たとえば、目的変数が離散的な場合(例:喫煙の有無、就業状態、移住の意思)には、ロジスティック回帰のほうが当てはまりのよい結果を得ることができます。本記事では、ロジスティック回帰を用いて待機児童の有無に影響を与える変数の分析を紹介します。 このスライドでは、厚生労働省が公開している保育所等関連状況取りまとめ(平成30年4月1日)から申込者の状況についてのデータと、総務省が公開している平成28年度地方公共団体の主要財政指標一覧から全市町村の主要財政指標を利用しました。データのインポートについてスライド内でも説明していますが、インポートの際の注意点など詳細に関してはこちらのブログを参考にしてください。 SAS Visual Analytics 8.3 におけるロジスティック回帰の利用 from SAS Institute Japan ロジスティック回帰オブジェクトでは、自動的に最適なモデルが選択されます。オブジェクトを最大化し、詳細を表示すると使用したモデルを確認することができます。 スライド内の分析では、ロジットモデルを使用していました。 また、詳細からは当てはめの統計量、パラメータ推計値などの情報を確認することができます。 今回の分析結果の解釈として、待機児童の有無に影響を与えている要因は「財政力指数」「経常収支比率」「ラスパイレス指数」「実質公債費比率」でした。それぞれの変数についてパラメータ(効果量)推定値をみると、「財政力指数」が最も大きい正の値(2.49)となっており、「財政状況のよい市区町村ほど待機児童が発生しやすい」といえます。対して「申込者数」の推定値は(5%有意であるものの)0.000094と非常に小さく、申込者数の多寡が待機児童の有無に与える影響は小さいと言えます。ここから、自治体規模の大小と待機児童の有無は関係していないと推測できます。 そのほかのパラメータをみても、財政状況がよいほど待機児童がいることが分かりますが、ここから単純に「待機児童を減らすためには、財政状況を悪化させればよい」ということにはなりません。たとえば、待機児童が多い自治体では共働きが多く、結果として住民税収が増加し財政状況がよくなるなど、さまざまなストーリーを想定することができます。回帰分析から因果関係を主張するときには注意が必要です。 この分析では、財政指標を利用しましたが、他にも女性の就業率、出生率、世帯構成などのデータを利用するとより効果的な分析ができるでしょう。データセット内に2値の変数がない場合でも、スライド内の例のように自分で基準を決めることで新しい変数を作成することができます。これによって分析の幅が広がりますが、レポートには必ず変数の定義を記述してください。 引き続き本ブログのシリーズでは、図表・グラフの作成や統計解析の方法について紹介いたします。 第2回和歌山県データ利活用コンペティションへの参加も募集中ですので、高校生・大学生のご参加をお待ちしています。(追記:募集は締め切られました)

Analytics | SAS Events | Students & Educators
SAS Global Forum 2019 で発表しよう(学生向けプログラムあり)

全世界のSASユーザーが集う年次のイベント SAS Global Forum。 次回は2019年4月28日から5月1日まで、米国テキサス州ダラスで開催予定です。 現在、SAS Global Forum 2019での発表演題を募集しています。 本イベントは、600を超えるセッションでワークショップ、プレゼンテーション、e-ポスター、デモおよび交流プログラムが用意されており、アナリティクス活用についての事例やテクノロジーが多数紹介されます。昨年は5400人もの登録者があり、世界中のデータサイエンティストと情報交換が可能です。(2017年の様子を過去のブログで紹介しています。その1, その2, その3) 学生向けのプログラムも用意されており、多くの大学生・教育関係者が参加します。 Student Ambassador Program ... 「学生大使」として無料でイベントに招待(旅費や宿泊代もサポートされます!) Student Symposium ... 学生がチームで戦うコンテスト。ファイナリストはイベントに招待されます。 Academic Summit ... 学生と教育関係者向けの講演と交流プログラム。昨年、参加した日本の学生によるレポートはこちら。 ビジネスやアカデミアのユーザーが一堂に会するグローバルイベントで、学生が自身の分析・研究・提案を発表することで、ビジネスやアナリティクスの専門家からのフィードバックにより自身のアイデアを深めると同時に、国際的にネットワークを広げることができます。 まずは、10月22日の締切までにアブストラクトを投稿しましょう! SAS Japan アカデミア推進室では、投稿に向けて学生の皆さんをサポートいたします。 興味のお持ちの方は JPNAcademicTeam@sas.com までご連絡ください。

Analytics
Michael Rabin 0
Mit Prozessverbesserungen bei Versicherungen ist Langeweile garantiert! Oder?

Schaut man auf die Digitalisierungsprojekte der Versicherer, dann fällt auf, dass ein Großteil im Wesentlichen Prozessverbesserungen und Kosteneinsparungen sind. Prozesse und Kosten – das sind nicht gerade „moderne“ Begriffe und sie sind gefühlt das Gegenteil dessen, was an Buzzwords und Statements im Kontext Digitalisierung und Innovation genannt wird. Dass solch

Analytics
Gastbeiträge 0
Textmining in der Kundenkommunikation

„Hiermit beschwere ich mich!“ Auf Kundenbeschwerden schnell, präzise und im Idealfall im ersten Wurf problemlösend zu reagieren, das ist eine Königsdisziplin im Kundenerlebnis-Management. Zeige mir, wie du mit Beschwerden umgehst, und ich sage dir, ob du eine Zukunft hast! Gerade für Konzerne mit einer großen heterogenen Kundschaft, zum Beispiel im

1 2 3 86

Back to Top