Analytics

Find out how analytics, from data mining to cognitive computing, is changing the way we do business

Analytics | Machine Learning
Chris Hartmann 0
Machine Learning: Mehr Effizienz im Planungsprozess

Sie glauben, dass Machine Learning die Rolle von Nachfrageplanern komplett ersetzen kann? Dann lesen Sie diesen Beitrag besser nicht. Wenn Sie jedoch der Ansicht sind, dass maschinelles Lernen den Planungsprozess automatisieren kann, so dass Nachfrageplaner effizienter arbeiten können, dann stimme ich Ihnen voll und ganz zu! Intelligente Automatisierungstechniken sind quasi

Analytics | Artificial Intelligence | Machine Learning
Makoto Unemi (畝見 真) 0
SAS Viya:一般物体検出(Object Detection)を試してみた

PythonからSAS Viyaの機能を利用するための基本パッケージであるSWATと、よりハイレベルなPython向けAPIパッケージであるDLPyを使用して、Jupyter NotebookからPythonでSAS Viyaの機能を使用して一般物体検出(Object Detection)を試してみました。  今回は、弊社で用意した数枚の画像データを使用して、処理の流れを確認するだけなので、精度に関しては度外視です。  大まかな処理の流れは以下の通りです。 1.必要なパッケージ(ライブラリ)のインポートとセッションの作成 2.一般物体検出向け学習用データの作成 3.モデル構造の定義 4.モデル生成(学習) 5.物体検出(スコアリング)  1.必要なパッケージ(ライブラリ)のインポートとセッションの作成 swatやdlpyなど、必要なパッケージをインポートします。 from swat import * import sys sys.path.append(dlpy_path) from dlpy.model import * from dlpy.layers import * from dlpy.applications import * from dlpy.utils import * from dlpy.images import ImageTable   from dlpy.splitting import two_way_split from dlpy.blocks import *

Analytics | Data Management
Michael Herrmann 0
Data Preparation: Qualität per Self-service bei Banken

Finanzdienstleister haben aktuell massive Herausforderungen beim Management ihrer Daten: Der Kostendruck zwingt einerseits zu einem hocheffizienten Betrieb („run“). Zugleich wandeln sich andererseits die Prozesse im Business, Stichwort Digitalisierung („change“). Die drückenden Regeln der Aufsicht scheinen sich nicht vereinen zu lassen mit dem Anspruch der Kunden, flexibel, fix und doch datensparsam

Analytics
Michael Rabin 0
It’s Complicated: The Competitive, Coexisting and Cooperative Relationships Between Insurance Companies and Insurtechs

The insurance industry is one of the late starters in terms of digitisation, even in customer service, where digital networking has literally been imposed. This is largely the result of company size and the associated deadlocked structures, plus legacy systems and processes. These make it difficult to react spontaneously to

Advanced Analytics | Analytics | Artificial Intelligence | Customer Intelligence | Data Visualization | Machine Learning
Suneel Grover 0
SAS Customer Intelligence 360: A look inside the black box of machine learning [Part 3]

In parts one and two of this blog posting series, we introduced machine learning models and the complexity that comes along with their extraordinary predictive abilities. Following this, we defined interpretability within machine learning, made the case for why we need it, and where it applies. In part three of

1 2 3 4 89

Back to Top