Korean

Analytics
In-Sung Park 0
3rd Party 쿠키없는 디지털 세계 탐색하기

스마트폰 대중화로 모바일 광고 시장은 애드테크(Ad-Tech) 타겟 광고를 기반으로 약 800억 달러 규모로 성장하였으나, 사용자의 행동 정보를  동의 없이 사용하는 광고 생태계의 프로세스로 인해 개인정보 이슈를 가중시켰습니다. 최근 메타(페이스북 모기업)의 주가가 하루사이에 26% 넘게 폭락하였으며, 이는 메타의 실적 부진과 영업이익의 하락이 원인이었습니다. 메타의 경우 전체 매출의 98% 가량이 광고사업에서 나오고

Analytics
0
책임감 있는 AI를 시작하는 방법

사회의 모든 측면에서 인공 지능(AI) 채택이 급격히 증가함에 따라 윤리는 기술의 새로운 프론티어임이 입증되고 있습니다. 대중의 인식, 언론 조사 및 향후 규정으로 인해 조직과 데이터 과학 커뮤니티는 AI 사용의 윤리적 의미를 고려해야 합니다. 인적 요소를 고려하고 비즈니스 결과에 기여할 뿐만 아니라 개인, 사회 및 환경을 보호하는 AI 시스템을 개발할 필요성을

Analytics
Byoung-Jeong Choi 0
배팅랩: 분석을 지원하는 모델

공원을 걷다 보면 좋아하는 운동을 하는 아이들을 흔히 볼 수 있습니다. 그들은 종종 기술을 연마하기 위해 오랜 시간을 보냅니다. 그러나 혼자서는 무엇을 어떻게 해야 현재를 개선해야 하는지 파악하기 어렵습니다. 좀 더 나은 수준으로 향상하기 위해서는 무엇을 해야 하는지 가르칠 수 있는 코치를 고용하면 좋겠는데, 그렇게 하는 것은 비용이 많이 듭니다. 이럴 때 어떤 대안이

Analytics
Jong-Phil Park 0
고객 성향 분석(Customer Propensity Analysis) : DIY & DIFM 접근 방법

고객의 데이터를 분석하여 고객 성향 및 선호도를 이해하고, 이를 활용해 마케팅 업무를 효율화하고자 하는 노력은 90년대 데이터베이스 마케팅, 2000년대 분석 CRM, 최근의 퍼포먼스, 그로스 마케팅까지 계속적으로 진화하고 있습니다. 멀티채널에서 쏟아지는 고객의 온/오프라인 데이터를 통합, 분석하여 마이크로 타겟팅 마케팅은 기본적으로 고객 성향 예측 모형(Customer Propensity Model)을 기반으로 수행되고 있습니다. 디지털채널을 중심으로

Analytics | Artificial Intelligence | Internet of Things
Jihye Yoo 0
이젠 야구도 데이터로 배운다! (The Batting Lab)

야구에 데이터를 더한다면 어떤 효과가 일어날까요? 야구 실력도, 데이터 활용 능력도 향상시켜줄 어린이를 위한 데이터 리터러시 프로그램, SAS ‘배팅 랩’을 소개합니다. 전 세계적으로 7,000명 이상의 경영진을 대상으로 진행한 한 설문조사에 따르면 85%가 미래에는 데이터 활용 능력이 오늘날 컴퓨터 사용 능력만큼 더욱 중요해질 것[1]이라고 답했습니다. 반면, 48%의 어린이는 현재 교육 과정이 데이터

Analytics | Risk Management
Jihye Yoo 0
SAS, 가마쿠라 인수로 금융권 변동성 대응 지원 강화

SAS가 하와이 호놀룰루 소재 리스크 관리 전문기업 가마쿠라(Kamakura Corporation)를 인수했다는 소식을 전해 드립니다. 가마쿠라는 은행, 보험사, 자산운용사, 연금 기금 등 광범위한 금융 기관들이 다양한 유형의 금융 리스크를 관리할 수 있도록 전문 소프트웨어, 데이터 및 컨설팅을 제공하고 있는 비상장기업입니다. 치솟는 인플레이션과 경기 침체가 세계 경제에 먹구름처럼 드리워지면서, 크고 작은 금융 서비스

Analytics
Joon-Hyung Koh 0
기업의 골든 타임을 지켜주는 셀프 분석 플랫폼

기업의 골든타임을 지켜준다는 것은 신속하게 인사이트를 확보한다는 것이며, 신속하다는 것은 바로 ‘접근 및 활용이 쉽다’라는 것을 의미합니다. 여러분의 업무와 일상생활에서 ‘골든타임’은 어떤 것이 있을까요? 우리가 잘 알고있는 골든타임으로, 심장쇼크가 왔을 때 심폐소생술을 수행하는 4분의 골든타임, 비행기가 비상착륙했을 때 승객을 대피시켜야하는 90초의 골든타임, 그리고, 회사의 이슈가 발생했을 때 위기대응을 시작해야하는 15분의

Analytics
Jihye Yoo 0
데이터 분석과 AI 기술로 기후 위기에 대응하는 방법

최근 보고서에 따르면 기후 위기는 심각한 상태에 놓여 있습니다. 대형 산불과 홍수, 허리케인, 해수면 상승 등 기후 변화로 인한 전례 없는 기상 이변으로 지구촌 수십억 명의 사람들이 목숨을 잃었습니다. 데이터와 분석은 이 같은 상황을 예측하고 알림으로써 예방 조치를 취하게 하고, 기후 개선에 대한 인식을 높입니다. IoT 분석을 통한 홍수 대응

Analytics | Fraud & Security Intelligence
Min-Gi Cho 0
[AML 시리즈 #2] 거래 모니터링을 보완하는 AI/ML

지난 1회에서는 날로 진화하는 자금세탁 유형에 스마트하게 대응하며 자금세탁 방지 의무를 준수하는 데 AI(인공지능)와 ML(머신러닝)이 어떤 도움을 줄 수 있는지, 그리고 이를 활용하는 전략으로 AML Compliance Analytics Maturity Model을 소개했습니다. 이번 글에서는 AI와 ML을 도입하기 위한 준비 단계인 ‘데이터 품질’에 이어, 나머지 성숙도 단계를 소개합니다. Level 1. 행동 모델(Behavioral Modeling)

Analytics
Jihye Yoo 0
2022년에 주목해야 할 10가지 분석 동향

팬데믹이 장기화되며 시작된 2022년, 도약을 위한 발판을 마련하기 위해 무엇에 집중해야 할까요? 의료, 소매 산업, 정부기관, 금융 사기, 데이터 윤리 등 각 분야의 SAS 전문가들과 인터뷰를 진행했습니다. 2022년 주목해야 할 분석 동향 및 전망 10가지를 소개합니다. 호기심, 미래를 만들어 가다 "호기심은 기업에게 있어 직업 만족도 향상뿐만 아니라 보다 혁신적인 산업직군

Analytics | Data Visualization
Joon-Hyung Koh 0
AI 기반의 쉽고 간단한 Clinical Data 탐색 및 시각화 #2편

지난 블로그 포스팅 #1편에서는 임상시험 전 과정에 참여한 내.외부 모든 이해관계자가 임상시험 데이터에 쉽게 접근하여 진행 상황을 파악할 수 있도록 지원하는 SAS Visual Analytics 솔루션의 기능을 소개해 드렸습니다. 이번 포스팅에서는 이러한 AI기반의 SAS Visual Analytics 분석 솔루션을 활용하여 임상시험 SDTM 데이터의 탐색 및 시각화 리포트의 활용에 대해 알아보겠습니다. Clinical Data

Analytics
0
SAS VDMML을 사용한 강화 학습

강화 학습(RL)은 다양한 분야에서 사용됩니다. 예를 들면, 로봇 공학, 산업, 자동화, 대화 생성, 헬스케어 치료 추천 사항, 주식 거래 및 컴퓨터 게임이 포함됩니다. SAS Visual Data Mining and Machine Learning은 FQN(Fitted Q-Networks)과 함께 배치 강화 학습 기능을 한동안 제공했습니다. 흥미로운 소식은 SAS가 DQN(Deep Q-Networks)을 통해 온라인 "실시간" 강화 학습을 제공한다는

Analytics | Artificial Intelligence | Data Visualization
Joon-Hyung Koh 0
AI 기반의 쉽고 간단한 Clinical Data 탐색 및 시각화 #1편

임상시험을 비롯한 모든 업무에서 분석은 필수이며, 점점 고급분석을 필요로하고 있습니다. 이번 블로그 포스팅은 2편으로 나누어 1편에서는 임상시험 전 과정에 참여한 내.외부 모든 이해관계자가 임상시험 데이터에 쉽게 접근하여 진행 상황을 파악할 수 있도록 지원하는 SAS Visual Analytics 솔루션의 기능을 소개합니다. 이어 2편에서는 임상시험의 SDTM 데이터를 활용하여 SAS Visual Analytics 솔루션에 어떻게

Analytics
0
쿠버네티스 기반 SAS ESP: 개발자에게 어떤 변화가 있을까?

SAS Event Stream Processing (ESP) 2020버전 이상은 이제 클라우드 네이티브이며 쿠버네티스 환경에서 작동합니다. SAS ESP 프로젝트 개발자나 사용자가 새로운 환경을 효율적으로 활용하기 위해 알아야 할 몇 가지 사항이 있습니다. SAS ESP "factory" 서버가 더 이상 필요하지 않습니다 이전에는 SAS ESP 6.2 및 이전 버전에서 개발자가 ESP 프로젝트를 설계하기 위해 먼저

Analytics
WooSeong Jeon 0
지불/결제 시장의 변화와 새로운 사기 위협

지불/결제(Payments) 사기는 악의를 가진 누군가가 다른 사람의 개인 결제 정보를 훔치거나 속여 빼낸 다음 해당 정보로 허위 또는 불법 거래에 사용할 때 발생합니다. 새로운 결제 수단이나 서비스가 인기를 끌 때마다 결제 환경과 트렌드가 바뀝니다. 사기범들도 마찬가지입니다. 그들은 새롭고 점점 더 교묘해지는 지불/결제 사기 수법을 개발하여 새로운 환경에 적응합니다. 사기범은 사기를

Analytics | Fraud & Security Intelligence
Min-Gi Cho 0
[AML 시리즈 #1] 자금세탁 방지 고도화를 위한 AI/ML 도입 방안

1회. 도입 목적과 범위, AML Compliance Analytics Maturity Model 자금세탁 방지 의무가 있는 대부분의 금융 기관과 기업은 자금세탁 방지와 관련된 컴플라이언스 업무 수행을 위해 막대한 인력, 시간, 비용, 노력을 투자하고 있습니다. 자금 세탁 방지 컴플라이언스는 FATF가 설립된 1989년 이후 자금세탁 방지(AML;Anti-Money Laundering), 테러자금조달 방지(CFT; Countering the Financing of Terrorism), 대량살상무기

Analytics
Jong-Phil Park 0
SAS와 Microsoft의 초자동화(Hyper Automation)

Hyper Automation, 초(超) 자동화 제조, 여신, 물류 등의 산업군 및 마케팅, 영업 등의 직군에 종사하신다면 자동화(Automation)라는 용어는 그리 낮 설지 않은 용어일 것 입니다. 자동화는 인간의 노동 효율을 극대화하기 위해 인간의 개입을 최소화 하고 기계 또는 컴퓨터의 능력을 활용하는 방향으로 진화해 왔습니다. 예를 들어 마케팅 영역에서의 자동화의 경우, 마케팅 전략을

Analytics | Risk Management
DooHo Lee 0
ESG와 스트레스 테스트 기반의 기후 리스크 관리

전 세계적으로 기후변화 대응과 지속가능발전을 위한 금융기관의 역할이 강조되고 있습니다. 이를 위한 금융기관의 노력을 지원하기 위해 SAS는 딜로이트와 함께 지난 10월, 금융권 기후 리스크 관리를 위한 ESG 세미나를 개최했습니다. 그 중 일부를 소개합니다. 금융기관이 기후 리스크를 관리해야 하는 이유 기후 리스크는 크게 물리적 리스크와 전이 리스크로 구분됩니다. 물리적 리스크는 농업에

Analytics | Students & Educators
Jihye Yoo 0
데이터 사이언티스트를 위한 스킬 업 비법 대공개!

모든 것이 빠르게 변화하는 디지털 트랜스포메이션 시대에 신속하고 유연하게 대응할 수 있는 기업 역량을 갖추는 것은 성공적인 비즈니스의 필수 요소가 되었습니다. 비즈니스 신속성과 유연성을 갖추기 위해서는 데이터 기반의 의사결정이 핵심인데요. 모든 산업 분야에서 변화의 중심에 있는 다양하고 복잡한 데이터를 분석하고 새로운 가치를 만들어내는 것은 더 이상 IT팀만의 업무는 아닙니다. 기존의

Analytics
Jihye Yoo 0
[SGF시리즈 #5] SAS Viya 클라우드 지원과 주요 파트너십

SAS는 마이크로소프트에 이어 아마존, 구글, 레드햇 등 파트너십을 확대하고 있으며, 50여 IoT기술 기업과 협력하고 있습니다. SAS 브라이언 해리스 CTO는 이번 SAS 글로벌 포럼에서 SAS가 파트너십을 확장하는 이유, 그로 인해 고객이 누리게 될 혜택을 간단히 소개했습니다. 마이크로소프트, 아마존, 구글, 레드햇 지원 변화는 리스크가 아닙니다. 오랜 시간이나 엄청난 비용이 드는 것도 아닙니다.

Analytics
Jihye Yoo 0
[SGF시리즈 #4] 5가지 핵심 기술 비전

뉴노멀 시대에서는 데이터의 복잡성, 다양성, 규모가 극적으로 증가합니다. 분석 에코시스템은 그 어느 때보다 거대하며, 훨씬 복잡해졌습니다. SAS 브라이언 해리스 CTO는 이번 SAS 글로벌 포럼에서 이 같은 새로운 변화에 맞서는 SAS의 노력을 소개했습니다. 2021년의 화두는 ‘한 발 앞선 행동과 뉴노멀 시대에서의 번영’입니다. 이미 많은 기업이 시장의 기대에 부응하기 위해 적응하며 비즈니스

Advanced Analytics | Analytics | Artificial Intelligence
Jihye Yoo 0
[SGF시리즈 #3] 성공의 열쇠 AI, 혁신적인 리더가 성장을 주도하는 방식

싱가포르에 본사를 둔 ADDO AI사는 인공 지능으로 세계를 변화시키고 있는 기술 기업으로, 세계 유수의 기업을 고객으로 두고 있는 있습니다. 이 회사의 공동 설립자 겸 대표 아예사 칸나(Ayesha Khanna)가 지난 SAS 글로벌 포럼에서 실제 기업의 사례를 중심으로 AI 트렌드를 소개하며, AI를 이용하여 경쟁에 앞서갈 수 있는 방법을 소개했습니다. 기계는 우리를 어떻게

Analytics
Jihye Yoo 0
[SGF시리즈 #2] 다시 생각하기 : 모르는 것을 아는 힘

펜실베니아대학교 와튼스쿨 교수이자 조직심리학자, 저자인 애덤 그랜트(Adam Grant)는 싱크 어게인이 필요한 이유, 과학자처럼 생각하기, 겸손한 자신감, 가면증후군적 경향을 강점으로 바꾸는 방법, 배움 네트워크 구축 방법, 다시 생각하기와 다시 학습하기를 실천에 옮기는 방법, 직장 내 정신적 안전, 멘탈 피트니스 등 다채로운 주제로 SAS 글로벌 포럼에서 발표했습니다. 그 중 일부를 소개합니다.  

Analytics
Jihye Yoo 0
[SGF시리즈 #1] 포스트 팬데믹 시대, 분석이 비즈니스를 성공적으로 이끄는 방법

세계 최대의 분석 컨퍼런스 ‘SAS Global Forum 2021’이 지난 5월, 온라인으로 개최됐습니다. 하이라이트 국문 영상으로도 보실 수 있도록 준비되어 다시 한 번 블로그를 통해 내용들을 정리해 소개해 드립니다. 이번 SAS 글로벌 포럼에서는 마이크로소프트와의 전략적 제휴에 이어, 아마존웹서비스(AWS)와 구글 클라우드에서도 데이터 분석을 지원한다고 밝혔고, 올해 말에는 레드햇 오픈시프트 지원도 계획하고 있다고

Analytics
Joon-Hyung Koh 0
누구나 손쉽게 사용 가능한 AI 기반의 시각화 분석

시각화 분석을 위해서는 빅데이터를 활용할 수 있어야 하며, 시각화 및 고급 분석, 셀프 서비스, 리포팅 기능을 갖춰야 합니다. 아울러 데이터 핸들링, 분석, 리포트 생성에 이르는 전 과정에서 인사이트를 확보하고자 하는 모든 이들이 자유롭게 사용할 수 있어야 합니다. SAS AI 기반의 시각화 솔루션은 완전 초보자도 자동 추천과 자동 예측 기능을 사용하여

Advanced Analytics
Jinmo Choi 0
텍스트 데이터로 모델 성능 높이는 꿀팁

최근 화두가 되는 빅데이터와 머신 러닝은 예측 모델의 성능을 올리기 위한 방안으로 시작된 것입니다. SAS VDMML(Visual Data Mining and Machine Learning)은 예측 모델 개발 시 텍스트 데이터를 이용하여 모델의 성능을 높여주는 텍스트 분석 툴로, 비즈니스 사용자와 데이터 사이언티스트, 예측 모델 개발자 모두가 활용할 수 있습니다. 텍스트 분석은 자연어 처리 과정이

Analytics
In-Sung Park 0
최신 AI 기술로 구현하는 고객 여정의 최적화 방법

최근 마케팅에서 가장 중요한 이슈는 AI와 디지털, 고객 여정입니다. 이 모든 것은 ‘개인화 마케팅을 통한 고객 경험의 최적화’라는 마케팅의 궁극적 목표와 맞닿아 있습니다. 고객 경험 최적화를 위한 SAS의 전략과 솔루션을 소개합니다. 고객 여정 최적화를 위한 SAS의 비전과 로드맵 SAS의 비즈니스 솔루션인 SAS Customer Intelligence 360는 전사적인 마케팅 플랫폼입니다. 2004년 SAS

Analytics
Bang-Bon Goo 0
하이브리드 머신러닝으로 텍스트 분석의 한계를 넘다

모든 비즈니스 영역으로 확대되는 텍스트 분석 그동안 소셜 미디어 분석에 국한되었던 텍스트 분석은 이제, 콜센터, 마케팅, 품질 영역으로 확장은 물론 최근 들어 전통적인 수작업 영역(발주처 요구사항 분석, AI기반 안전사고 예방 등)까지 확대하고 있습니다. 텍스트 분석을 하기 위해서는 텍스트와 함께, AI 기반의 NLP 머신러닝 엔진이 필수입니다. 이 엔진 내에서 문맥 기반의

Analytics
WooSeong Jeon 0
고객을 바로 알아야 비로소 보이는 Fraud

사기 위험 증가, 그리고 고객 바로 알기 무수히 많은 고객 거래에서 사기를 찾는 일은 모래 속에서 바늘을 찾는 것과 같다고들 말합니다. 디지털 가속화로 휴대폰 하나만 있으면 언제 어디서든 원하는 서비스를 이용하고 비용을 지불하는 편리한 시대를 살고 있는 지금, 기업과 기관은 고객에게 보다 빠르고 더 많은 편의를 제공하여 시장과 고객을 뺏기지

Analytics
Il-Hyoung Kwon 0
Forecasting 알고리즘, 미래를 변화시키다

포스트 코로나 시대의 불확실한 미래를 헤쳐나가기 위해서는 그 어느 때보다 예측력을 높여야 합니다. 예측 알고리즘을 사용하면 불확실성을 최소화하고, 정책이나 전략에 따른 변화를 보다 정확히 가늠하며 최적의 의사결정을 내릴 수 있습니다. SAS Visual Forecasting이 필요한 이유 Forecasting 알고리즘은 어떻게 미래를 변화시킬 수 있을까요? ARIMA와 같은 전통적인 단변량 시계열 알고리즘은 타깃(종속) 변수만을

1 2 3 8