Korean

Advanced Analytics | Analytics | Artificial Intelligence | SAS Events
Jeanne (Hyunjin) Byun 0
SAS 애널리틱스 익스피리언스 2019, 밀라노를 접수하다!

지난 10월 21일부터 23일까지 이탈리아 혁신 기술의 중심지 밀라노에서는 유럽 최대 규모의 분석 컨퍼런스 ‘SAS 애널리틱스 익스피리언스 2019(SAS Analytics Experience 2019)’가 개최됐습니다. 3일간 밀라노 컨벤션 센터(Mico Milano Convention Centre)에서 진행된 올해 컨퍼런스에는 1,800명이 넘는 데이터 사이언티스트와 비즈니스 리더들이 모여 다양한 논의가 진행되었으며, 참석자들에게는 56개의 breakout 세션, 48개의 데모 부스, 그

Advanced Analytics | Artificial Intelligence
Jeanne (Hyunjin) Byun 0
SAS, 인공지능(AI) 부문 매출 105% 성장

SAS, 인공지능(AI) 부문 매출 약 105% 성장...업계 평균 대비 4배 가량 높아 IDC 보고서, SAS의 임베디드 AI 및 오픈소스 기술 통합에 주목... AI 비즈니스 성장세 높이 평가 짐 굿나잇 SAS 공동 창립자 겸 CEO “SAS의 AI 및 분석 기술을 바탕으로 다양한 산업의 기업 고객이 새로운 비즈니스 경쟁력을 제고할 수 있도록

Advanced Analytics | Analytics | Internet of Things
Jeanne (Hyunjin) Byun 0
2019 상반기 글로벌 분석 전문가들의 SAS 평가 리포트를 공유합니다

SAS는 매년 IDC(International Data Corporation), 가트너(Gartner), 포레스터 리서치(Forrester Research, Inc.) 등 세계적인 분석 기관 및 시장 조사 업체로부터 SAS의 제품과 전략, 시장 경쟁성 등 여러 측면에서 평가를 받고 있습니다. 이러한 애널리스트들의 평가와 조언은 기술 구매를 고려하는 고객들은 물론 SAS의 발전과 혁신에도 큰 도움이 됩니다. 올해 상반기 SAS는 전문가들로부터 어떤 평가를

Analytics | Artificial Intelligence | Internet of Things | Machine Learning
AI 분석으로 제조업을 혁신하다: ‘SAS 제조 이노베이션 포럼 2019’

지난 7월 4일 SAS코리아는 광화문 포시즌스호텔에서 국내 제조 산업 관계자를 대상으로 ‘SAS 제조 이노베이션 포럼 2019(SAS Manufacturing Innovation Forum 2019)’을 성공적으로 개최했습니다. SAS는 이번 포럼에서 미국, 독일, 일본 및 국내 제조사들의 고객 사례를 통해 ▲글로벌 B2B 업계의 예측 자산 유지보수 ▲제품 품질 및 투자 수익(ROI) 개선 ▲수요 예측을 통한 생산/판매

Analytics | Artificial Intelligence | Machine Learning
성공적인 비즈니스를 위한 인공지능 전략

인공지능(AI) 기술은 더 이상 공상 과학소설 속 제재가 아닌 기업이 마주한 현실이 되었습니다. 오늘날 기업들은 머신러닝, 알고리즘, 스마트형 커넥티드 제품 등 다양한 AI 기술을 새롭고 흥미로운 방식으로 비즈니스에 적용하고 있습니다. 딜로이트(Deloitte)에서 이러한 인지기술(cognitive technologies)을 적극적으로 도입하는 기업들을 대상으로 진행한 최근 설문조사에 따르면, 응답자 중 76%가 AI를 비롯한 인지기술이 3년 이내에

Advanced Analytics | Analytics | Data Visualization
비즈니스 인텔리전스로 진화하는 임상시험 프로세스: SAS코리아 ‘제약산업의 데이터 분석과 리포트 시각화’ 세미나

SAS코리아가 6월 20일 삼성동 코엑스 인터컨티넨탈 호텔에서 국내 주요 제약 및 임상시험수탁기관(CRO) 산업 관계자를 대상으로 ‘제약산업의 데이터 분석과 리포트 시각화: SAS 분석 프레임워크 소개와 활용 방안 및 시각화 데모’ 세미나를 성황리에 개최했습니다. SAS는 이번 세미나에서 데이터 분석 인사이트에 기반한 제약 기업의 신규 비즈니스 창출 방안과 글로벌 기업의 선진 사례를 통한

Analytics | SAS Events | Students & Educators
SAS코리아, 롯데홈쇼핑과 함께하는 ‘제 17회 SAS 분석 챔피언십’ 개최

SAS코리아, 롯데홈쇼핑과 함께하는 ‘제 17회 SAS 분석 챔피언십’ 개최  빅데이터·AI 알고리즘 활용한 ‘홈쇼핑 방송 판매실적 예측’ 주제로 공모 SAS 솔루션 및 분석 교육을 통한 실제 비즈니스 과제 해결…분석 전문성 제고 6월 30일까지 참가 접수…우승팀에 상금·교육·인턴십 가산점 등 다양한 혜택 제공 2019년 6월 5일, 서울 – 세계적인 분석 선두 기업 SAS(쌔스)코리아(www.sas.com/korea)가

Analytics | Artificial Intelligence | Risk Management
Jeanne (Hyunjin) Byun 0
SAS, “금융 리스크 전문가 81%, 인공지능(AI) 기술 효과 누려”

SAS, “금융 리스크 전문가 81%, 인공지능(AI) 기술 효과 누려” 프로세스 자동화·신용 평가·데이터 클렌징 분야에서 가장 큰 AI 도입 효과 나타나 응답자 절반 이상(52%) AI 활용 기술 격차 체감 2019년 4월 24일, 서울 – 세계적인 분석 선두 기업 SAS(www.sas.com/korea)와 국제재무위험관리전문가협회(GARP, Global Association of Risk Professionals)가 발표한 ‘금융권 리스크 관리 분야의 인공지능

Analytics | Data for Good
NC HealthConnex, SAS 애널리틱스로 최신 의료 서비스를 제공하다

지난 2월, 미국 노스캐롤라이나(NC)주는 SAS 및 InterSystems와 제휴하여 주 정보기술부(North Carolina Department of Information Technology; NC DIT) 산하의 ‘건강 정보 교환 센터(Health Information Exchanges; HIE)’ NC HealthConnex의 현대화 소식을 발표했습니다. NC HealthConnex는 향상된 진료 서비스와 환자의 안전을 지원하고 진료 이전을 용이하게 하며, 주 전역에 걸쳐 4,500개 이상의 의료 시설에 관련

Analytics | Artificial Intelligence | SAS Events
Jeanne (Hyunjin) Byun 0
SAS, 향후 3년간 AI 분야 10억 달러 투자 계획 발표

SAS, 향후 3년간 AI 분야 10억 달러 투자 계획 발표 R&D 혁신 교육 및 전문가 컨설팅 지원 통해 기업 AI 역량 강화 국내에서도 AI 전문가 교육 프로그램 제공… 인재 양성 및 분석가 저변 확대 2019년 3월 28일 – 세계적인 분석 선두 기업 SAS(www.sas.com/korea)가 향후 3년간 인공지능(AI) 분야에 총 10억 달러(한화 약

Fraud & Security Intelligence | Risk Management | SAS Events
SAS코리아, ‘SAS 뱅킹 이노베이션 포럼’ 성료

SAS코리아, ‘SAS 뱅킹 이노베이션 포럼’ 성료  인공지능(AI)과 머신러닝 기반 솔루션 활용한 성공적인 금융 디지털 혁신 방안 공유 ATB 파이낸셜·NH농협은행, SAS 바이야로 업무 생산성 향상 및 최적의 고객 서비스 제공 2019년 3월 7일 – 세계적인 분석 선두 기업 SAS(쌔스)코리아(www.sas.com/korea)가 6일(수) 서울 여의도 콘래드호텔에서 국내 주요 금융권 관계자가 참석한 가운데 인공지능(AI)과 머신러닝(ML)

Analytics | Data Management
Jeanne (Hyunjin) Byun 0
2019 데이터 사이언티스트로 향하는 길

불과 몇 년 전 까지만 해도 ‘데이터 사이언티스트’라는 단어는 많은 사람들에게 꽤나 생소한 단어였을 것입니다. 하지만 4차 산업혁명이 이미 산업 전반에 깊숙이 자리한 오늘날, 빅데이터 분석이 핵심 역량으로 부상하며 데이터 과학자(data scientist)의 인지도 역시 굉장히 높아졌습니다. 단순히 인지도뿐만이 아닙니다. 세계 최대 취업 정보 사이트 글래스도어(Glassdoor)가 발표한 2019년 ‘미국 최고 직업

Analytics | Artificial Intelligence
Jeanne (Hyunjin) Byun 0
공공 기관을 위한 효과적인 인공지능 전략

2019년에도 인공지능(AI)은 여전히 모든 기관 및 조직들에게 큰 화두일 것으로 보입니다. 인공지능 기술을 통해 기관은 대량의 데이터를 빠르게 분석하고 반복적인 업무 프로세스를 자동화하며, 투명성을 높임으로써 전반적인 운영 효율을 개선할 수 있습니다. 이러한 혁신은 이제 더 이상 첨단 IT 기업들만의 성공 사례가 아닙니다. 새해를 맞이하여 공공 기관이 효과적으로 AI 전략을 구현하기

Artificial Intelligence | Internet of Things
SAS Korea 0
지능형사물인터넷(AIoT)은 유틸리티 산업을 어떻게 발전시킬까요?

지능형사물인터넷(AIoT)에 대해 들어본 적 있으신가요? 지능형사물인터넷은 사물인터넷(IoT)을 통해 연결된 스마트 기기 데이터에 인공지능(AI)을 적용하는 것입니다. AIoT가 활성화되면 연결된 기기(커넥팅 디바이스)에서 수집된 정보를 기반으로 머신러닝 학습과 분석은 물론 서비스 제공까지 동시에 이루어질 수 있을 텐데요. 학습과 자동화를 기반으로 사람의 업무 처리 영역을 돕는 인공지능 기술은 경험 학습, 새 입력값(Input)을 통한 조정, 별도의 수동 조작이

Advanced Analytics | Artificial Intelligence | Internet of Things
SAS Korea 0
디지털 트랜스포메이션의 필수 요소, 인공지능(AI)과 사물인터넷(IoT)

햄버거와 감자튀김, 떡볶이와 순대, 와인과 치즈를 보통 찰떡궁합이라고 하죠. 기업과 조직의 디지털 트랜스포메이션(Digital Transformation) 추진에 있어 인공지능(AI)과 사물인터넷(IoT)은 뗄래야 뗄 수 없는 찰떡궁합입니다.  인공지능과 사물인터넷, 지능형사물인터넷(AIoT) 기술은 서로 연관되어 있습니다. 사람의 인체에 비유한다면 사물인터넷 없는 인공지능은 데이터 수집 능력이 없는 두뇌와도 같고, 반대로 인공지능 없는 사물인터넷은 데이터에서 인텔리전스를 추출할 수 없는

Advanced Analytics | Machine Learning
SAS Korea 0
딥러닝을 활용한 객체 탐지 알고리즘 이해하기

인공지능의 기반 기술 중 하나인 딥러닝은 눈부신 혁신을 거듭하고 있습니다. 텍스트 번역이나 이미지 분류 애플리케이션에 적합한 새로운 수준의 신경망이 개발되면서 사물인터넷(IoT)과 자율주행 관련 기술에도 활용되고 있는데요. 딥러닝 기술의 발전과 함께 객체 탐지 기법도 많은 주목을 받고 있습니다. 그렇다면 객체 탐지(Object Detection)는 무엇일까요? 객체 탐지는 이미지에서 관심 객체를 배경과 구분해 식별하는 자동화

Analytics | Data for Good
SAS Korea 0
데이터, 우리 삶의 인도주의적 문제를 해결하다

지난 9월 중순 미국 샌디에고에서 개최된 최대 규모의 분석 컨퍼런스 ‘SAS 애널리틱스 익스피리언스(Analytics Experience) 2018'의 연사로 참여한 빅데이터 전문가 트리샤 왕(Tricia Wang) 박사는 세계적인 동물행동학자 프란스 드 발(Frans de Waal)의 영상을 공유했습니다. 이 영상은 연구자에게 돌을 주고 보상을 받는 두 마리의 원숭이를 통해 인간의 도덕적 심리를 보여주는데요. 원숭이들은 돌을 건네줄

Artificial Intelligence | Fraud & Security Intelligence | Machine Learning
SAS Korea 0
사기 탐지부터 방지까지, 인공지능과 머신러닝이 해결할 수 있는 범위는?

인공지능(AI)과 머신러닝이 최근 화두로 떠오르며 이를 둘러싼 여러 오해가 생기고 있습니다. 특히 사기 분야에 대해서는 더 많은 오해를 하고 있는데요. 인공지능과 머신러닝이 정교한 기술과 방대한 양의 데이터를 사용해 도움을 주고 있다는 사실, 알고 계신가요? 인공지능과 머신러닝은 기술은 우리의 일상적인 업무에서 생각해보지 못했던 질문을 던집니다. 이러한 질문들은 보편적으로 알려져 있지 않은 사실이기

Analytics | Artificial Intelligence | Fraud & Security Intelligence
Jeanne (Hyunjin) Byun 0
사이버 보안 향상을 돕는 인공지능 분석 활용 3단계!

인공지능(AI)은 지난 한 해 동안 미국 연방 정부에서 가장 주목 받은 키워드 중 하나였습니다. 지난 9월, 백악관은 미국의 연방정부가 15년 만에 연방 차원의 체계적 ‘국가 사이버보안 전략’ 공개하며 사이버보안 강화와 기술 발전을 위한 청사진을 제시하기도 했는데요. 발표된 전략 보고서에는 미국 내 네트워크·시스템·데이터 안보 강화, 강화된 사이버보안을 환경에서 디지털경제와 기술혁신 증진, 미국의

Advanced Analytics | Learn SAS | Machine Learning
SAS Korea 0
머신러닝 해석력 시리즈 4탄: 라임(LIME)으로 모델 해석력 개선하기!

그 동안 머신러닝 해석력 시리즈를 통해서 머신러닝의 부분 의존성(PD; Partial Dependence), 데이터 세트 해석 등을 소개해드렸는데요. 오늘은 라임(LIME; Local Interpretable Model-Agnostic Explanation)을 통해 머신러닝 모델의 해석력을 개선할 수 있는 방법에 대해서 알아보겠습니다. 머신러닝 모델 해석력 시리즈 1탄, 2탄, 3탄을 놓치셨다면 아래 링크를 통해 확인해주세요! 머신러닝 해석력 시리즈 1탄: 인공지능(AI)과 머신러닝을 신뢰하기 위한 필수

Advanced Analytics | Customer Intelligence | Machine Learning
SAS Korea 0
SAS 커스터머 인텔리전스 360(SAS Customer Intelligence 360): 블랙 박스 모델의 해석 기법 알아보기

머신러닝의 블랙 박스 모델을 소개하는 첫 번째 블로그와 두 번째 블로그를 통해서 머신러닝 모델의 복잡성과 머신러닝의 뛰어난 예측 결과를 활용할 수 있는 해석력이 필요한 이유, 적용 분야에 대해서 소개해드렸는데요. 이번에는 기업 실무자 입장에서 SAS 비주얼 데이터 마이닝 앤드 머신러닝(SAS Visual Data Mining and Machine Learning)을 활용한 SAS 커스터머 인텔리전스 360(SAS Customer Intelligence 360)에서 해석 기법과

Analytics | Data for Good
SAS Korea 0
SAS, 데이터 분석으로 허리케인 플로렌스 재해 복구 활동에 나서다!

초강력 허리케인 '플로렌스’ 미국 남동부 지역을 강타하다 지난 9월, 대서양에서 발생한 초강력 허리케인 '플로렌스(Florence)'가 미국 노스캐롤라이나주를 비롯한 미국 남동부 지역을 강타했습니다. 하루 무려에 762mm 기록적 물폭탄이 내리면서 허리케인으로 인한 재산 피해액은 총 170~220억달러(약 19조~25조원) 인것으로 추정되기도 했는데요. 허리케인 플로렌스가 쓸고 간 자리에는 집, 일자리, 건물, 학교 등을 잃은 이재민들이 남았습니다.

Advanced Analytics | Customer Intelligence | Machine Learning
SAS Korea 0
SAS 커스터머 인텔리전스 360(SAS Customer Intelligence 360): 블랙 박스 모델의 해석력 이해하기

지난 'SAS 커스터머 인텔리전스 360(SAS Customer Intelligence 360): 머신러닝의 블랙 박스 모델이란’ 블로그에서 머신러닝 모델은 다면적이고 계속 진화하는 주제라고 소개해드린 바 있는데요. 오늘은 머신러닝 모델의 해석력(Interpretability)에 대해 자세히 살펴보고자 합니다. 머신러닝 모델은 놀라운 예측 능력을 제공하지만 매우 복잡하여 이해하기 쉽지 않습니다. 또한 머신러닝 모델은 예측한 결과에 대한 명확한 설명도 제공하지 않기

Analytics | Internet of Things
Jeanne (Hyunjin) Byun 0
현대 제조업의 필수 3가지 기술! 디지털 트윈, 분석 그리고 사물인터넷

만약 나의 주치의가 내 디지털 트윈(Digital Twin)을 만들어 실시간으로 나의 상황을 다양한 센서 데이터 등을 통해 업데이트 받을 수 있다면 어떨까요? 현실세계의 기계나 장비, 사물 등을 컴퓨터 속 가상세계에 구현한 디지털 트윈을 통해 몸 속의 잠재적인 질병에 대한 신호를 미리 받을 수 있을지도 모릅니다. 디지털 트윈이 암 관련 질병을 미리

Analytics | Risk Management
SAS Korea 0
은행 자본 계획부터 금융 규제 대비까지, ‘스트레스 테스트’ 완전정복!

은행은 금융위기와 같은 경제적 충격이 외부에서 발생했을 때 채무 불이행에 따른 손실 규모를 파악하고 보유하고 있는 위험자산에 대한 포트폴리오 변화를 빠르게 확인할 수 있어야 하는데요. 특히 글로벌 금융위기 이후 은행권을 대상으로 글로벌 경제 위기에 견딜 수 있는 재무 건전성 역량을 문서화하는 규제요구가 높아지면서 대형 투자은행들이 경제 상황이 극도로 나빠졌을 때

Advanced Analytics | Customer Intelligence | Machine Learning
SAS Korea 0
SAS 커스터머 인텔리전스 360(SAS Customer Intelligence 360): 머신러닝의 블랙 박스 모델이란?

머신러닝이 마케팅 생태계 내에서 지속적으로 발전함에 따라 현대화된 알고리즘 접근법의 해석력이 중요해지고 있습니다. 지난 번 게시했던 머신러닝 해석력 관련 블로그에서 인공지능(AI)과 머신러닝을 신뢰하기 위한 필수 조건, 데이터 세트를 이해하고 해석하는 방법, 그리고 머신러닝 모델의 작동 원리에 대한 인사이트를 도출하는 변수를 표시하는 방법에 대해 설명한 바 있는데요. “우리는 머신러닝에 의해 구동되는 애플리케이션에 둘러싸여 있으며,

Artificial Intelligence | Customer Intelligence | Machine Learning
Jeanne (Hyunjin) Byun 0
기업 성공 사례에서 인공지능(AI)의 혁신적인 역할을 살펴보다!

인공지능(AI)의 성장은 과연 디스토피아를 초래할까요? 인공지능은 굉장히 빠른 속도로 발전하고 있지만, 동시에 인공지능의 잠재적 위험성을 우려하는 목소리도 커지고 있는데요. 하지만 반대로 생각해보면 인공지능은 인간의 능력을 대체하는 것이 아니라, 인간의 능력을 향상시키기 위해 설계되었습니다. 인공지능은 이미 헬스케어, 보험, 금융, 농업 등 대부분의 산업 분야에서 인간을 돕는 중추적인 역할을 하고 있는데요. 마찬가지로 SAS는 인공지능을

Analytics | Artificial Intelligence
SAS Korea 0
인공지능(AI)이 헬스케어 산업에 불러올 혁신적인 변화는?

인공지능(AI)이 우리에게 미치는 영향이 나날이 커지면서 일자리를 대체할 것이라는 우려도 높아지고 있습니다. 이를 위해서 인공지능의 윤리 방안과 규제에 대한 논의가 이루어지고, 기업이 알고리즘으로 인해 일자리를 빼앗긴 직원에게 재교육을 제공해야 한다는 목소리가 나오고 있는데요. 하지만 이러한 모든 내용은 인공지능이 미치는 부정적인 면에만 치우쳐 있습니다. 그렇다면 인공지능이 우리의 삶에 주는 혜택으로는 무엇이 있을까요? 인공지능,

Data Management | Internet of Things
Jeanne (Hyunjin) Byun 0
사물인터넷(IoT)은 보험 산업을 어떻게 발전시킬까요? ‘인슈어테크’ 실현을 위해 고려해야 할 5가지 과제

보험 업계는 변화에 느리다는 평을 받는 보수적인 산업이지만 지난 5년간 엄청난 변화와 혁신을 경험하고 있습니다. 보험사들은 고객과 유통 관계에서 혁신을 모색하며 디지털 이니셔티브에 많은 투자를 하고 있는데요. 이와 함께 데이터 분석, 인공지능 등의 정보기술(IT)을 활용해 기존 보험 산업을 혁신하는 인슈어테크(insurtech)가 디지털 기회를 활용할 수 있는 보험 업계의 새로운 분야로 떠오르고

Artificial Intelligence | Machine Learning
SAS Korea 0
인공지능(AI)이 재정의하는 윤리는? 윤리적인 인공지능 시스템 관리를 위한 4가지 핵심요소

인공지능(AI)은 1950년대부터 머신러닝, 링크 걸기 시작 딥러닝(deep learning), 인지 컴퓨팅(cognitive computing)이 점차 발전하면서 우리와 꽤 오랜 시간을 함께 해왔습니다. 최근 달라진 점이 있다면 아마 활용할 수 있는 데이터의 양이 어마어마하게 늘었다는 것인데요. 방대한 양의 데이터 덕분에 오늘날 과거에는 불가능했던 방식으로 인공지능 기반의 모델을 학습시킬 수 있게 되었습니다. 이러한 인공지능은 지금의 세상과 거대한 데이터를 이해하는

1 2 3 4 6