ディープ・ラーニングとAI
この写真に写っているのは何でしょうか?きっと皆さん考えることもなく瞬時に家だと分かるでしょう。なぜなら、何百、何千という種類の家を見てきた経験から、家を構成する特徴(屋根、ドア、窓、玄関前の階段など)を脳が認識できるようになっているからです。そのため、たとえ家の一部分しか写っていない写真でも、自分が何を見ているかが瞬時に分かります。家を認識する方法を学習済みなのです。 多くの皆さんは、この話題ですぐに、「あぁ、ディープ・ラーニングの話だな」とピンとくることでしょう。今回は、昨今メディアを賑わせ、誤解も多くある、ディープ・ラーニングとAI(人工知能)の理解について、簡単に頭を整理してみましょう。 ディープ・ラーニングとは、家の画像の認識、分類、説明など人間が行うようなタスクを実行できるようにコンピューターに学習させることに特化した、人工知能(研究)の一領域です。しかし、ビジネスにおけるディープ・ラーニングの手法と応用はどのような状況にあり、アナリティクスの将来にディープ・ラーニングはどのようなメリットをもたらしてくれるのでしょうか? ディープ・ラーニングとその仕組みについて、SASのアナリティック・サーバー研究開発担当副社長であるオリバー・シャーベンバーガー(Oliver Schabenberger)に話を聞きました。 ディープ・ラーニングをどのように定義していますか? 【オリバー・シャーベンバーガー】ディープ・ラーニング手法は機械学習の一種であり、いわゆる「弱いAI(人工知能)」の一形態と考えられます。「弱いAI」とはAI分野の専門表現で、人間の脳と同じように動作する思考マシンの作成を前提としていないことを意味します。その代わり、「ディープ・ラーニング手法は人間が行うような特定のタスクをインテリジェントな方法で実行することができる」という前提に立っています。そして私たちは今、こうしたインテリジェンス強化システムが人間よりも優れた正確性、安定性、反復性をもってタスクを実行できるケースが多々あることを明らかにしつつあります。 ディープ・ラーニングは機械学習とビッグデータが重なり合っている領域だという人もいますが、それだけではありません。「ディープ」および「ラーニング」という側面の意味を詳しく考えてみましょう。 ディープ・ラーニングの1つの側面(=ディープ)は、ニューラル・ネットワーク・モデルを「より深く」適用することによってアナリティクスの精度が高まる、ということを指しています。学習(ラーニング)システムは、そのモデルあるいは環境を階層構造として表現します。それぞれの層(レイヤー)は、例えば画像における規則性の形態(形状、パターン、境界線など)のように、課題に関する異なるタイプの情報を表していると考えることができます。こうした階層構造とニューロン間の情報フローという2つの特長から、ニューラル・ネットワークは学習システムを構築するための標準ツールとなっています。コンピューティングとアルゴリズムの高度化により、現在では、ほんの数年前と比べても、より多くの層からなるニューラルネットを構築できます。ディープ・ニューラル・ネットワークは多くの学習手法の土台となる概念です。 第2の側面(=ラーニング)は、より多くのデータを利用する際のパフォーマンス(スピード、精度、一般化可能性)の改善という意味においても、システムが「学習」を行うことを指しています。この側面は、パターンの認識、テキストの読解、音声の理解、事象や物体の分類など、「これまで人間が学習してきたタスクを機械が実行する」という応用用途も指し示しています。システムは課題を解決するのではなく、課題に関してトレーニングを受けるのです。 ディープ・ラーニングはどのような点でAI(人工知能)なのでしょうか? 【シャーベンバーガー】多くの人々は「人工知能」という言葉を聞いたとたん、機械が人間に取って代わるのではないかと不安になりますが、ディープ・ラーニングの場合、そうはなりません。コンピューターは依然として「石頭」 です。あくまで、パターン認識、音声認識、質問への回答など、人間が行うようなタスクを機械独自の方法で疑似的に実行しているにすぎません。また、学習した能力を別のタスクに一般化することもできません。例えば、最近、数回の対局で世界最強の囲碁棋士に勝利したAlphaGo(アルファ碁)は、Googleの子会社であるDeepMindが開発した驚異的なディープ・ラーニング・アルゴリズムですが、画像を分類したり、洗浄機の中身を食器棚に片づけたりといった用途には役立ちません。それでも、囲碁に関しては驚異的なプレイヤーなのです。 しかしながら、人間の大脳新皮質が担っている機能に関する最新の理解とディープ・ニューラル・ネットワーク手法との間には、興味深い類似点があります。新皮質は多くの認知能力を担っていますが、そこでは階層構造を通じて入力信号が伝播されており、それらの層がモノの表現を生み出す規則性を発見していることが分かってきたのです。 [Tweet "コンピューターは依然として「石頭」 です。あくまで、パターン認識など、人間が行うようなタスクを機械独自の方法で疑似的に実行しているにすぎません。"] 同様に、ニューラル・ネットワーク・アルゴリズムもレイヤーとニューロンで編成されます。しかし、「ニューラルネットがコグニティブ・コンピューティングの世界で有用性が証明されてきたのは、それが人間の脳を模倣しているから」というよりは、「過去のアプローチとは異なる方法、すなわち、我々人間の大脳新皮質とは異なる方法でデータを処理するからこそ、ニューラルネットは成功を収めてきている」と言うべきではないかと私は思います。 ディープ・ラーニングの理解しやすい例を示していただけますか? 【シャーベンバーガー】ディープ・ラーニングと標準的なアナリティクス手法の違いが分かる優れた例として、 Atari社のBreakoutというゲーム(筆者と同年代以上の方であればご存知のはずの「ブロックくずし」のオリジナル作品らしいです)をプレイするタスクを考えてみましょう。最初に、考えられる選択肢について議論し、それから実際の動作をYouTubeのビデオでご覧いただきます。 1つの選択肢は、ブレイクアウトの遊び方を知っているゲームボットを書くことです。パドル(プレイヤーが水平に移動させるバー)とその動き方、ボール、ボールがパドルや壁やブロックにぶつかったときの跳ね返り方のルールなどの要素をプログラミングします。つまり、ゲームのロジックと戦略を、ソフトウェア自体に組み込むのです。ソフトウェアをコンパイルしたら、導入して実行し、ゲームボットがどのようにプレイするかを観察します。ゲームプレイ能力の改良が必要な場合は、コード改変、コンパイル、導入、実行、テストというサイクルを繰り返していきます。 もう1つの選択肢は、「深層強化学習」と呼ばれるディープ・ラーニング手法を用いて課題を解決する方法です。ディープ・ニューラル・ネットワークでゲーム環境を表現し、この環境内で動く方法、アクションの取り方、そのアクションを取ることで得られる報酬をプログラムに指示します。つまり、報酬はゲーム画面の上部に表示されるスコアであり、アクションはパドルを動かすことであるとコンピューターに伝えます。コンピューターが知る必要があるのは、これが全てです。実行が始まるとコンピューターは、パドルを動かし、スコアがどうなるかを読み取ります。この選択肢の場合、ゲームをプレイするというタスクは、「ゲームの現在の状態と、取るべきアクション(パドルの動かし方)の2つを変数として、将来の報酬を最大化せよ」という最適化課題へと変わります。 それでは、Google DeepMind社が実装したAtariブレイクアウトの深層強化学習をビデオでご覧ください。 このソフトウェアは、壁やブロック、さらにはボールの存在さえも知りません。知っているのは、自分で動かせるパドルがあることと、少しでも高いスコアを獲得するという目的だけです。それでも、学習開始から2時間後には、熟練者並みにプレイしています。誰もコンパイル、導入、実行を繰り返す必要はありませんでした。4時間後には、ゲームをクリアできるようになっています。特定の領域に関する知識は一切投入されていません。 ディープ・ラーニングについて詳しく学ぶにはどうすればよいでしょうか? 【シャーベンバーガー】私はつい最近、SASのサイトにディープ・ラーニングとは? という新しい記事を寄稿しました。ディープ・ラーニングが重要な理由と動作の仕組みについて、幅広い情報を盛り込んであります。また、ディープ・ラーニングに関するWebセミナーや、ディープ・ラーニングの現状についてデータ・サイエンティストが対談しているビデオへのリンクも用意しました。ディープ・ラーニングについて同僚に説明する際もお役に立つと思います。 いかがでしたでしょうか。ディープ・ラーニングとAIの位置づけが少しクリアになったのではないでしょうか。 ゲームと言えば、任天堂の「スーパーマリオ」というゲームを人工知能でクリアしてしまおうという取り組みもあります。インターネット上で検索すると色々情報が見つかるので調べてみてください。学習過程の動画を見ていて、筆者が始めてこのゲームをやったときの、最初の頃まだうまく操作できてないときの動かし方(右に無謀に突き進んでは行き過ぎてやられる)にそっくりだなと感じました。 データマイニング、機械学習、ディープ・ラーニングについて、弊社日本語サイトを更新したので是非ご活用ください。これらのテクノロジーの実用についてのより詳細な情報をご提供しています。