Artificial Intelligence

Discover how AI is used today and how it will augment human experience in the future

Artificial Intelligence | Customer Intelligence | Students & Educators
Mayra Pedraza 0
Data, models and accountability: AI education for marketers

Developments in artificial intelligence (AI) are expected to change the world of work across the board. We have already witnessed the impact on marketing communication endeavours and strategies. The ripples spreading across the water include ethical issues and questions of accountability. I caught up with Anabel Gutiérrez, Senior Lecturer in

Advanced Analytics | Analytics | Artificial Intelligence | Fraud & Security Intelligence
Pedro Felipe Cerón 0
Es el momento de combatir la corrupción con analítica

Las técnicas creadas a partir del Big Data han revelado múltiples aplicaciones que han servido para poner sobre la mesa los fraudes y las filtraciones masivas de información sobre temas relacionados con, por ejemplo, paraísos fiscales y evasión de impuestos. A Latinoamérica, según reportes divulgados por Global Financial Integrity, la

Analytics | Artificial Intelligence | Customer Intelligence
Gustavo Gutman 0
¿Cómo enfrentar la recesión a partir de los datos?

En situaciones donde la reducción de costos es un imperativo y las empresas carecen de presupuestos óptimos, los datos se vuelven aún más importantes de lo que eran antes de una recesión de datos. Priorizar libera resultados reales, y analizar la información de manera correcta se convierte en un punto clave. Determinar y definir qué clientes tienen mayor probabilidad

Advanced Analytics | Artificial Intelligence | Data Management
David Downing 0
How to rebuild citizen trust & unlock the power of AI

According to the Organisation for Economic Cooperation and Development (OECD), “service performance, citizen satisfaction and public trust are closely connected. Yet how can governments overcome citizens’ declining levels of trust in the way that their data is collected and used in order to improve service accessibility and quality? It’s not difficult

Analytics | Artificial Intelligence | Machine Learning
Rhett Scheel 0
Bühne frei für KI und Machine Learning im Gesundheitswesen!

Krankenversicherung und neue Technologien – geht das zusammen? Auf alle Fälle! Und das User-Group-Treffen „Analytik in der Krankenversicherung“, das kürzlich in Leipzig stattfand, hat es unter Beweis gestellt. Diese von den Gesundheitsforen Leipzig ausgerichtete Veranstaltung ist ein sehr informatives Forum, auf dem sich analytische Fachexperten aus der Gesetzlichen Krankenversicherung (GKV)

Analytics | Artificial Intelligence | Customer Intelligence
Pedro Felipe Cerón 0
Ciudades conectadas, el camino hacia ciudades inteligentes

En los últimos 25 años las ciudades colombianas han venido expandiendo su territorio y han aumentado su demanda de recursos naturales y servicios vitales. Esto lo sustentan las cifras del DANE que muestran que en 2017, 76% de la población colombiana se concentró en ciudades frente a un 24% que

Advanced Analytics | Artificial Intelligence
Olivier Zaech 0
Unterstützung statt Bedrohung: Wie KI das Gesundheitswesen verbessern kann

Fest steht: Künstliche Intelligenz (KI) wird unser aller Leben verändern – und tut es schon. Weniger klar ist, in welcher Weise und in welchem Zeitrahmen diese Veränderungen passieren – und was am Ende dabei herauskommt. In vielen Bereichen gibt es wilde Spekulationen. Bei Life Sciences und im Gesundheitssektor lichtet sich

Artificial Intelligence | Machine Learning | Programming Tips | Risk Management
Sian Roberts 0
Deep learning for numerical analysis explained

Deep learning (DL) is a subset of neural networks, which have been around since the 1960’s. Computing resources and the need for a lot of data during training were the crippling factor for neural networks. But with the growing availability of computing resources such as multi-core machines, graphics processing units

Analytics | Artificial Intelligence
Michael Rabin 0
Mit Prozessverbesserungen bei Versicherungen ist Langeweile garantiert! Oder?

Schaut man auf die Digitalisierungsprojekte der Versicherer, dann fällt auf, dass ein Großteil im Wesentlichen Prozessverbesserungen und Kosteneinsparungen sind. Prozesse und Kosten – das sind nicht gerade „moderne“ Begriffe und sie sind gefühlt das Gegenteil dessen, was an Buzzwords und Statements im Kontext Digitalisierung und Innovation genannt wird. Dass solch

Analytics | Artificial Intelligence
Pedro Felipe Cerón 0
Los Gobiernos le están sacando mayor provecho al valor de la Analítica y la Inteligencia Artificial

En un mundo que a diario se transforma con los datos y los avances tecnológicos, cada vez son más las organizaciones que están adoptando la Analítica y la Inteligencia Artificial para fortalecer sus procesos y entregar mejores resultados a sus clientes. Este escenario no es ajeno al sector gobierno, que

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning
Javier Alexander Rengifo 0
Capacidades y aplicaciones de la Inteligencia Artificial

En la actualidad, se ha masificado el uso de la Inteligencia Artificial (IA) en diferentes aplicaciones de negocio como: los servicios de atención al cliente y la toma de decisiones operativas en diferentes áreas de las empresas, consiguiendo optimizar múltiples procesos, al hacerlos más eficientes y logrando una mayor rentabilidad.

Advanced Analytics | Analytics | Artificial Intelligence | Data Visualization | Machine Learning
Makoto Unemi (畝見 真) 0
AI民主化を加速する「自動分析機能」が登場

AIプラットフォームSAS Viyaでは、「AI実用化」や「AI民主化」を促進するために、従来から自動予測モデル生成や、機械学習やディープラーニングの判断根拠情報の提供などを可能としていましたが、SAS Visual Analytics on SAS Viyaの最新版8.3では、新たに「自動分析」機能が実装されました。 「自動分析」機能を使用すると、予測(ターゲット)に影響を与えている変数の特定や、変数ごとにどのような条件の組み合わせがターゲットに依存しているのかを「文章(条件文)」で表現して教えてくれます。 この例で使用するデータ「HMEQJ」は、ローンの審査を題材にしたもので、顧客ごとに1行の横持ちのデータです。このデータ内にある「延滞フラグ」が予測対象の項目(ターゲット変数)で、0(延滞なし)、1(延滞あり)の値が含まれています。 データリスト内の「延滞フラグ」を右クリックし、「分析」>「現在のページで分析」を選ぶだけで、「延滞フラグ」をターゲット変数に、その他の変数を説明変数とした分析が自動的に行われ、 以下のような結果が表示されます。 分析結果画面内説明: ① ドロップダウンリストで、予測対象値(0:延滞なし、1:延滞あり)の切り替えが可能です。この例では、「1:延滞あり」を選択し、「延滞する」顧客に関して分析しています。 ② 全体サマリーとして、すべての顧客の内、延滞実績のある顧客は19.95%であり、「延滞する」ことに関して影響度の高い変数が順に表記されています。 ③ 「延滞する」ことに関して影響を与えている変数の度合い(スコア)を視覚的に確認することができます。 ④ 「延滞する」可能性が最も高くなるグループ(条件の組み合わせ)が文章で示されています。この例では、③で「資産に対する負債の割合」が選択され、これに応じて文章内の該当箇所がハイライトしています。 ⑤ この例では、③で「資産に対する負債の割合」が選択され、これに応じて「0:延滞なし、1:延滞あり」別の顧客の分布状況がヒストグラムで表示されています。選択された変数が数値属性の場合は、ヒストグラムで、カテゴリ属性の場合は積み上げ棒グラフで表示されます。 分析に使用する説明変数(要因)に関しては、右側の「データ役割」画面内で選択することができます。 以上のように、分析スキルレベルの高くないビジネスユーザーでも、簡単かつ容易に、そして分かり易くデータから有効な知見を得ることができます。 ※AIプラットフォーム「SAS Viya」を分かり易く学べる「特設サイト」へGO!

Analytics | Artificial Intelligence | Students & Educators
Andreas Becks 0
KI und die Angst um meinen Job: Wie eine emotionale Debatte zu einer sachlichen und konstruktiven Auseinandersetzung werden kann

Wird KI die Spaltung unserer Gesellschaft in die „Elite“ und den „besorgten, abgehängten Rest“ dramatisch beschleunigen? Zum Beispiel durch hocheffektive personalisierte Medizin, die sich nur wenige leisten können? Oder den Wegfall von automatisierbaren Jobs im Mittelstand, während die hochqualifizierte Elite ihre Machtpositionen beibehält oder gar ausbaut? Oder bietet sich nicht

1 2 3 4 9

Back to Top