Artificial Intelligence

Discover how AI is used today and how it will augment human experience in the future

Advanced Analytics | Artificial Intelligence | Internet of Things | Machine Learning
Christian Goßler 0
Lenins Werk und Lehmanns Beitrag zum Internet of Things (IoT10)

Lenin ist sauer, saurer sogar, als es Bolschewiken-Art ist. „Ich habe Ihre IoT-Blogs gelesen“, sagt er. Und er ist sauer. Noch auf dem SAS Forum in Bonn hatte er unsere Zusammenarbeit gepriesen und den Stellenwert von Datenanalyse und künstlicher Intelligenz hervorgehoben. Auch Lenins Mitarbeiter waren dort gewesen, die Hornbrillen-Dame und

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning
Makoto Unemi (畝見 真) 0
PythonやRで開発されたモデルの精度をビジュアルパイプラインで簡単比較

データサイエンティスト(以降、DSと表記)は、お好みのプログラミング言語を使用して、日々モデリングを行っています。昨今は、その中でもオープンソースのプログラミング言語であるPythonやRを使用されている方の割合が多くなってきているようです。その結果として、企業の分析組織やチーム内には複数の異なる言語を活用するDSが混在するケースも見受けられます。(一人で両方の言語を操る方もいます。) 「Pythonを操るAさんが作成されたモデルと、Rを操るBさんが作成されたモデル、どちらの精度が高いのかを容易かつビジュアルに比較することができたら…」  ということで、今回は、SAS ViyaのModel Studioを使用し、ビジュアルなパイプライン上での異なる言語間モデル精度比較をご紹介します。  手順は以下の通りです。 ① プロジェクトの新規作成と学習用のデータソース選択 ② パイプラインの作成と実行 ③ 実行結果(モデル精度)の確認 ① プロジェクトの新規作成と学習用のデータソース選択 「SAS Viya: ビジュアルパイプラインで予測モデル生成(基本編)」の「1.プロジェクトの新規作成と学習用のデータソース選択」を参照ください。 ② パイプラインの作成と実行 画面上部にある「パイプライン」をクリックします。 パイプラインには「データ」ノードのみが表示されています。左端の機能ノードアイコンをクリックすると、 パイプラインに追加可能な機能ノードのリストが表示されます。 まずは学習データに対する前処理として、欠損値補完を行います。 「データマイニングの前処理」内にある「補完」を「データ」ノード上にドラッグすると、 「データ」ノードの下に「補完」ノードが追加されます。 同様の手順で、「その他」内にある「オープンソースコード」を「補完」ノード上へドラッグすると、「補完」ノードの下に「オープンソースコード」ノードが追加されます。 機能ノードごとのオプション設定は、右側画面内で行います。 「言語」が「Python」であることを確認し、「開く」をクリックします。 開かれた画面内に、比較対象のPythonのコード(ランダムフォレストのモデル)をコピーします。右上の「保存」(フロッピーディスクアイコン)をクリックし、「閉じる」をクリックします。 ※ターゲット変数名や入力変数リスト名など、画面左側の変数名を使用することによって、オープンソースコードノードとその他のノード間でのデータ連携が可能となり、異なる言語のモデル間での精度比較も可能になります。各種規定変数名の詳細に関しては、オンラインマニュアルを参照してください。 「オープンソースコード」ノードの右側にある3つのドットが縦に並んでいる(スノーマン)アイコンをクリックし、「名前の変更」を選択し、 「Pythonフォレストモデル」に変更します。 このようにドラッグ操作でノードを追加する以外に、パイプライン上のメニューからノードを追加することもできます。 「補完」ノードのスノーマンアイコンをクリックし、「下に追加」>「その他」>「オープンソースコード」の順に選択すると、 「補完」ノードの下に「オープンソースコード」ノードが追加されます。 以降、同様の手順で比較対象のRのコード(ランダムフォレストのモデル)をコピーし、ノードの名前を変更します。 「オープンソースコード」ノードは、データに対する前処理として使用することもできます。デフォルトでは、「オープンソースコード」ノードは、データに対する前処理として認識されているので、これを「教師あり学習」に切り替えます。 PythonとRのモデルノードそれぞれのスノーマンアイコンをクリックし、「移動」>「教師あり学習」を選択します。 すると、「モデルの比較」ノードが追加され、PythonとRのモデルノードと接続されます。 パイプラインが完成したので、右上の「パイプラインの実行」アイコンをクリックし、実行します。 ③ 実行結果(モデル精度)の確認 処理が正常に完了したら、「モデル比較」ノードのスノーマンアイコンをクリックし、「結果」を選択します。 Rのフォレストモデルの方が精度が高い、チャンピオンモデルであると表示されました。 リフトやROC、様々な統計量で、精度を詳細に比較することもできます。 以上が、ビジュアルパイプラインでPythonとRのモデル精度を比較する手順です。 もちろん、必要に応じて、PythonやRのモデルとSASのモデルの精度を比較することもできます。 ※ビジュアルパイプラインでPythonとRのモデル精度を比較は、SAS Viya特設サイトにある動画でもご覧いただけます。 ※実際にPythonとRのモデル精度比較を試してみたい方は、Githubに公開されているアセットを活用ください。

Analytics | Artificial Intelligence | Internet of Things | Machine Learning
Charlie Chase 0
Practical approaches to new product forecasting using structured and unstructured data

When it comes to forecasting new product launches, executives say that it's a frustrating, almost futile, effort. The reason? Minimal data, limited analytic capabilities and a general uncertainty surrounding a new product launch. Not to mention the ever-changing marketplace. Nevertheless, companies cannot disregard the need for a new product forecast

Artificial Intelligence | Customer Intelligence
Tiffany Carpenter 0
Is artificial intelligence the future of customer experience?

Artificial Intelligence (AI) has caught everyone's attention in recent years, mainly because of its disrupting nature which gives it enormous potential with countless applications. Among the many possibilities that AI promises, customer experience (CX) is an area that offers immense opportunity for organisations to differentiate. Welcome to the experience economy

Artificial Intelligence | Machine Learning
Mary Beth Moore 0
NLP for military intelligence

Every day, military intelligence analysts sit behind computers reading a never-ending stream of reports, updating presentation templates and writing assessments. But intelligence is more than documenting events and sharing breaking news. It involves understanding and predicting complexities in human behavior across various organizational constructs and using facets of information to

Artificial Intelligence | Machine Learning | Programming Tips
0
How to spot counterfeit company logos with AI – no SAS programming experience needed

As one of SAS' newest systems engineers, recently joining the Americas Artificial Intelligence Team, I’m incredibly excited to gain expertise in artificial intelligence and machine learning. I also look forward to applying my knowledge to enable others to leverage the advanced technologies that SAS offers. However, as a recent graduate

Advanced Analytics | Analytics | Artificial Intelligence | Internet of Things | Machine Learning
Adriana Marquez A. 0
¿Hasta dónde podría llegar con la Inteligencia Artificial?

Hablar de Inteligencia Artificial parece muy lejano para algunas personas y para otras es algo que ya se está implementado a una gran velocidad.  En este artículo espero iniciar con una serie de reflexiones y conversaciones acerca de lo que esperamos desarrollar hoy y a dónde queremos llegar en el

Analytics | Artificial Intelligence
Andreas Becks 0
Dem Algorithmus in die Blackbox schauen: KI-Entscheidungen erklärbar machen

Im vorangegangenen Blog habe ich die „vier Säulen des Vertrauens“ für automatisierte Entscheidungen vorgestellt. Dieser hat gezeigt: Erklärbarkeit und Transparenz beziehen sich auf den gesamten analytischen Prozess. Wie sieht es aber mit der „Blackbox“ der maschinellen Lernalgorithmen aus? Auch dort muss Transparenz durch eine analytische Plattform gewährleistet sein. Die gute

Artificial Intelligence | Internet of Things | Machine Learning
Christian Goßler 0
AC&DC und Sherlock im Internet of True Detectives (IoT9)

Lenin schaut übellaunig wie ein Bolschewik: „Sherlock? Der hat mit leistungsfähiger künstlicher Intelligenz so wenig zu tun wie mit echter Detektivarbeit! Wir brauchen weder Sherlock noch seinen Doktor!“ Lenin hatte mich zum Challenger Workshop eingeladen. Ein Berater der Accelerator Change & Disruption Consultancy (AC&DC) bat nach kurzem Impulsvortrag (Change! Disruption!)

Advanced Analytics | Artificial Intelligence
Andreas Becks 0
Actuarial Transformation: How Mr Kaiser's Retirement Is Turning Actuarial Mathematics Into a Disturbance

"Hello, Mr Kaiser!" Remember him? At least our dear German readers will: From the 1970s to the early 2000s he came to our living room before every newsreel. As the insurance representative of the nation, he embodied trust, closeness and fairness. Whether property, casualty or motor vehicle insurance, Günther Kaiser

Analytics | Artificial Intelligence
Jeanne (Hyunjin) Byun 0
공공 기관을 위한 효과적인 인공지능 전략

2019년에도 인공지능(AI)은 여전히 모든 기관 및 조직들에게 큰 화두일 것으로 보입니다. 인공지능 기술을 통해 기관은 대량의 데이터를 빠르게 분석하고 반복적인 업무 프로세스를 자동화하며, 투명성을 높임으로써 전반적인 운영 효율을 개선할 수 있습니다. 이러한 혁신은 이제 더 이상 첨단 IT 기업들만의 성공 사례가 아닙니다. 새해를 맞이하여 공공 기관이 효과적으로 AI 전략을 구현하기

Analytics | Artificial Intelligence
Andreas Becks 0
Nachvollziehbarkeit und Vertrauen: Oberste Prämisse für ethische KI-Entscheidungen

Im ersten Teil meines Blogs habe ich argumentiert, dass die Beschäftigung mit künstlicher Intelligenz (KI) und Ethik keine rein philosophische oder gesellschaftspolitische Fragestellung ist. Eines ist klar: Die Ethik-Debatten werden in diesem Jahr weitergehen und sich stärker an den realistischen Möglichkeiten und Risiken von KI orientieren. Unternehmen und Organisationen, die

Advanced Analytics | Analytics | Artificial Intelligence
Cameron McLauchlin 0
How are AI and advanced analytics transforming health and life sciences?

The potential for artificial intelligence (AI) and the Internet of Things (IoT) to transform the way health care and therapies are delivered is tremendous. It’s not surprising that the health care and life sciences industries are being flooded with information about how these new technologies will change everything. While it’s

Analytics | Artificial Intelligence | Students & Educators
Anita Lakhotia 0
Myth-busting: was macht ein Data Scientist den ganzen Tag?

Diese Frage bekomme ich von Nicht-Data-Scientists immer häufiger gestellt. Und es ranken sich viele Meinungen und Mythen um diese Expertengruppe. Genau aus diesem Grund habe ich mich mit Simon Greiner, einem angehenden Data Scientist und erfahrenen IT-Berater, unterhalten. Ein Mythos über Data Scientists: sie lesen keine Bücher mehr. Stimmt nicht!

1 2 3 4 12

Back to Top