How artificial intelligence will enhance customer experiences

There's no doubt that artificial intelligence (AI) is here and is rapidly gaining the attention of brands large and small. As I talk to customers and prospects, they are interested in understanding how AI and its subcomponents (cognitive computing, machine learning, or even deep learning) are being woven into various departments (marketing, sales, service and support) at organizations across industries.

Here are some examples of cognitive computing and machine learning today at organizations, and how these capabilities will enhance customer experience in the future.

I think it's important to start with a few foundational facts:

  • AI as a practice is not new – John McCarthy and others started their research into this area back in the 1950s.
  • AI and its subcomponents are rooted in predictive analytics (neural networks, data mining, natural language processing, etc., all have their beginnings here).
  • Automation and the use of supervised and unsupervised algorithms are crucial to machine learning and cognitive computing use cases.
  • Deep learning uses the concept of teaching and training to accomplish more advanced automation tasks. It’s important to note that deep learning is not as prevalent from a customer experience perspective as machine learning and cognitive computing. Let's take a look at what AI means for brands as the customer experience becomes the primary differentiator for marketing organizations.

algorithms

A cognitive computing use case

Cognitive computing enables software to engaging in human-like interactions. Cognitive computing uses analytical processes (voice to text, natural language processing and text and sentiment analysis) to determine answers to questions.

For example, a SAS customer uses automation to provide a quicker response to service requests that come in to the brand's contact center. It can send an automated reply to service inquires, direct the customer to appropriate departments, and send customer responses back to the channel – all using SAS solutions. These capabilities reduces the number of replies that require human intervention and improves service response times. This same use case can be applied across industries such as retail, telecom, financial services and utilities. The end result? A happier customer and an improved customer experience.

cognitive computing

Analytics: the core of machine learning

Machine learning uses software that can scan data to identify patterns and predict future results with minimal human intervention.

Analytics play an important role. Model retraining, the use of historical data and environmental conditions all serve as inputs into the supervised and unsupervised algorithms that machine learning uses. For example, some of our large telecom and financial services providers use data, customer journey maps and past patterns to be able to serve timely and relevant offers during customer interactions.

Many of our customers can do in less than one second, and are providing response and replies that are relevant and individualized. Another great example of machine learning is the development work that SAS is doing currently with regard to its marketing software.

Our customer intelligence solutions use embedded machine learning processes to make setting up activities and completing tasks in the software easier for analysts and marketers alike. For instance, the software will automatically choose the optimal customer segment and creative combinations for a campaign. It will also recommend the best time to follow up with a customer or segment and on the customer’s preferred devices. Machine learning also gives marketers the ability to understand how to use and modify digital assets for the most reach and optimal conversions.

The newest addition to artificial intelligence

Deep learning, a newer concept that relies on deep neural networks – is certainly something that is coming to the marketing and service realms. Many companies have started looking at how we teach and train software to accomplish complex activities – drive cars, play chess, make art (the list goes on). As for marketing, I believe we will see deep learning being used to run marketing programs, initiate customer service interactions or map customer journeys in detail.

These are just a few examples of how we are seeing AI improve the customer experience. You and I, as digitally empowered consumers, will certainly benefit from man and machine working together to automate the interactions that we have with brands on a daily basis. I urge you to keep an eye out for how brands big and small are automating the interactions they have with you – I think you will be pleasantly surprised with the outcome.

Post a Comment

Real-time decisioning: Is it always your best option?

I wanted to share some thoughts about when real-time decisioning is actually necessary. I guess the reason for wanting to do this is to balance the view that everything can be actioned by trigger event campaigns executed in real time.

So have a look at the graph below – with the x axis being time, and the y axis being some kind of KPI measure – for example, response (or perhaps the effect on net promoter score).

NPS chart

 

I’ve drawn four lines on this graph to help make the point:

  • The green line – just going flat over time – suggests that sometimes response doesn’t vary much over time. A good example of this would be high-ticket items or a mortgage, perhaps. Realistically – if you send a message to a customer after they have hovered over the mortgage product on your website – it isn’t really going to seal the deal there and then.
  • The red line shows that response can drop over time. I’m not sure it’s quite as linear as this, but essentially, this is a case of ”the sooner the better”, and so real-time decisioning is important – but I would argue not essential. It depends on the cost to execute and the overall ROI.
  • The black line suggests that real-time execution of a decision is essential – if you don’t act quickly, the moment has gone, as has your customer! This is more akin to perhaps helping a customer who is having difficulty on line – e.g. filling out a form – if you don’t help them immediately, they may go away, never to return. But do show a bit of caution, too. Is the profile more like the blue line?
  • The blue shows that if you act too quickly, you may actually destroy responsiveness (or more likely value). Making an offer to a customer on an abandoned cart can come too quickly – equally there are overtones of Big Brother here.

Three ways to determine the best action

So, how do you find out what kind of profile is the most useful for the particular action that you want to take?

Well, first of all, I would just like to give a shout out to marketing nous (i.e., common sense) because in fairness, some of these things can be obvious. For example, if you reduce a customer’s download speed as they approach their limit you help the customer avoid incurring overages – it is clear that more rapid decisioning will result in better responses.

Secondly, the answers are probably in your data. I hear a lot about attrition and churn triggers – such as browsing competitor websites. What could you do? Well, it would be pretty easy to observe when that browsing behaviour occurred and then plot the churn or attrition event out over time.  There are probably many natural tests that are sitting in your data right now.

Finally there is multivariate testing. Why not try making that abandoned cart or basket offer at Hour 1/2/3 or Day 1/2/3?  That way, you can get a feel for how behaviour varies over time so that you can then make the optimal decision for the customer and your business.

If you want to find out a more about how SAS helps its clients act upon insight, visit the customer intelligence solutions page.

Post a Comment

SAS 360 Discover: Predictive marketing's new secret weapon

In April, SAS 360 Discover was introduced at SAS Global Forum 2016. Since my career started at SAS over five years ago, I have been anticipating this important announcement. In my opinion, this is a major breakthrough for the space of digital intelligence.

In my first year working at SAS, I learned of research and development to address industry needs for digital marketers. Although technologies from Google, Adobe and others address web analytics with measurement reporting, there was a shortcoming.

Historically, web analytics has always had a huge data challenge to cope with since its inception. And when the use case for analysts is to run summary reports, clickstream data is normalized:

Data Aggregation for Web Analytics

It nicely organizes raw clickstream into small, relevant data for reporting. However, this approach presents challenges when performing customer-centric analysis. Why? Holistic customer analysis requires the collection and normalization of digital data at an individual level. This is one of the most important value props of SAS 360 Discover.

Multi-source data stitching and predictive analytics require a data collection methodology that summarizes clickstream:

Data Aggregation for Advanced Analytics

The data is prepared to contextualize all click activity across a customer's digital journey in one table row, including a primary key to map to all visits across browsers and devices. The data table view shifts from being tall and thin to short and wide. The beauty of this is it enables sophisticated analysis to prioritize what is important, and what isn't. This concept of data collection and management is considered a best practice for advanced customer analytics.

How many marketers do you know who wake up in the morning and claim they can't wait to hear about how analysts are spending 80 percent of their time preparing raw web behavior data, rather than focusing on analysis and actionable insights? None, you say? Exactly! Wouldn't you rather hear your marketing analysts spend their time doing this?

20-80 Rule

I have always appreciated SAS for what it can do with structured, semi-structured, and unstructured information, but there has always been one dependency – where do I point SAS to obtain the originating data? SAS 360 Discover eliminates this requirement, and provides data collection mechanisms for your brand's website(s) and mobile apps.

SAS-Tag

 

In addition, the raw semi-structured data streams SAS natively collects are run through a pre-built relational data model using SAS Data Management for various forms of contextualization that stretch far beyond traditional web analytic use cases.

Data Model

The output of this data model schema summarizes all digital visitor behavior at this level of detail:

  • Customers.
  • Anonymous visitors.
  • Sessions (or visits).
  • Interactions (or clicks/hits).

Complete View

The data model schema will allow for additional configurations and introduction of other digital data sources to accommodate your organization's evolving needs. More importantly, the benefits of the output are profound, and listed below is a summary of SAS 360 Discover benefits:

  • Digital data normalization to support online and offline data stitching of customers.
    • When offline data is residing in your organization's data warehouse, information is available at the customer level (not a click or hit level). That's a problem when you want to link it with web or app data. The amount of time analysts spend reshaping raw HIT extracts from their web analytics solution is astonishing, and quite difficult. Customer analysis requires online/offline data stitching, and overcoming this obstacle was a problem SAS set out to solve.
  • Measurement reporting and visualization of customers and segments.
    • The reporting remains critical as an entry stage for analytics. SAS believes there should be no limit to how many reports and dashboards can be produced to meet business objectives. In other words, unlimited ad hoc reports using SAS Visual Analytics, which is the analysis tool that is packaged with SAS 360 Discover
  • Predictive analyticsmachine learning, and data science  of customers and anonymous traffic.
  • Fueling the SAS customer decision hub
    • Brands gain a competitive edge if they stop perceiving customer engagement as a series of discrete interactions and instead see it as customers do: a set of interrelated interactions that, when combined, make up the customer experience. By folding in all known customer level information into a common hub, SAS can analyze, score and take intelligent, contextual actions across channels.

SAS CDH

The path to digital intelligence from traditional web analytics covers the diversity of data, advanced analytic techniques, and injection of prescriptive insights to support decision-making and marketing orchestration. Digital intelligence is a transformation — making it a competitive differentiator. It aims to convert brands to become:

  1. Customer-centric rather than channel-centric
  2. Focused on enterprise goals as opposed to departmental
  3. Enabled for audience activation and optimization
  4. Analytical workhorses

I suspect you would love to see demonstrations of the data that SAS 360 Discover collects from websites and mobile apps in action:

  1. Decision Trees
  2. Clustering
  3. Forecasting
  4. Logistic Regression

In addition, here is the on-demand video of the SAS Global Forum 2016 keynote presentation of SAS Customer Intelligence 360.

As a marketing analyst at heart, it is extremely gratifying to share my excitement for SAS 360 Discover.  The time for predictive customer marketing in the digital ecosystem is here, and the 800-pound gorilla in advanced analytics has just unleashed your new secret weapon.

Post a Comment

SAS 360 Engage: Being in the moment with your customers

If nothing else you read this year puts your marketing efforts in perspective, this quote from Henry Ford should: “It is not the employer who pays the wages. Employers only handle the money. It is the customer who pays the wages.”

Our customers deserve our respect. And I believe that, by and large, marketers treat their customers with the respect they deserve. But like with anything in life, creating happy customers only happens by making their experience relevant and satisfying – a complex task in an ever-changing environment.256722970

That’s why SAS has introduced its new SAS Customer Intelligence 360 platform. It gives you the ability to integrate data from all of your customer touchpoints and share and gather customer intelligence across your entire organization (not just customer-facing departments).

One of the important modules of the new platform is SAS 360 Engage that does just what the name implies – helps you better engage with your customer by using analytical insights to make the right offers, faster.

Marketing mindfulness

In the omnichannel world that marketers now inhabit, you know that you have to be hyper-alert at all times, or you miss an opportunity because you were too slow or make a misstep you’re not in a channel that your customer prefers.

The real power of SAS 360 Engage is in its ability to help you respond effectively to changes in customer behavior – say for example, the customer breaks a pattern of channel preference and moves to a different channel. You’ll be able to recognize behavior shifts and choose the best action for each interaction.

Personalizing, and even individualizing, the content that is placed on digital properties leads to higher engagement, loyalty and retention. It makes perfect sense. If customers see content that is relevant to them on a webpage or in a mobile app – they are much more likely to remain engaged – versus seeing generic content that is targeted to everyone. Targeting this “segment of one” increases uptake rates of offers and messages.

I can’t think of an industry or organization that doesn’t have customers –  no matter whether you call them clients, patrons or patients – that won’t benefit from more relevant engagements.

Post a Comment

SAS 360 Discover: Elevating the role of customer insights for confident digital marketing

Generating rich customer insights – the centerpiece of successful marketing efforts – is more arduous and crucial in today’s digitally saturated world. Brands must not only understand their customers across all touch points, but analyze and glean patterns from their behavior, and quickly respond to the faintest signs of changing preferences and needs.

 Our multi-screen world creates even more complexity for the marketer. A recent Nielsen study revealed that the typical US consumer now owns four digital devices, and spends 60 hours a week consuming content across devices.

Plus, a majority of US households now own web-connected televisions, computers and smartphones. Amidst all these digital devices, consumers also have numerous choices for how and when they access and engage with that content as part of their customer journey.

Smoother customer journeys, not fragmented hops

Given the growing number of digital touch points where customers now interact with companies, marketing often can’t do what’s needed all on its own. Many brands typically think of customers (and the insights gleaned from them) as being “owned” by particular function – marketing owns brand management; service 483134143owns support; sales owns customer relationships; retail operations own the in-store experience, etc.

As a result, the customer data and corresponding insights are fragmented across these functions. When businesses can’t effectively combine customer insights across multiple digital channels, let alone across multiple customer-facing functions, marketers are less confident about their efforts.

This is why brands must have effective technologies and processes in place so they do not lose track when charting, designing and measuring the customer journey. Whether customers are browsing your brand website, completing a purchase on your mobile app or talking with a service representative via online chat, customers demand to be recognized and treated consistently no matter the channel.

Broader, deeper customer knowledge

To this end, SAS 360 Discover goes beyond channel-level data to collect detailed customer-level data for deeper customer understanding and better marketing decisions. SAS 360 Discover is part of the new SAS Customer Intelligence 360 suite that can help you create a new level of customer experience.

Now, you can go beyond page views and clicks to knowing why customers behave as they do on your digital properties, what are the characteristics of your most profitable customers and which digital interactions successfully resulted in loyal, profitable relationships?

In today’s marketing environment, brands gain a competitive edge if they stop perceiving customer engagement as a series of discrete interactions and instead see it as customers do: a set of interrelated interactions that, when combined, make up the customer experience.

 

Post a Comment

Join the customer intelligence conversation

I’m a marketing technology marketer. I need to practice what I preach. Not a day that goes by (well, okay, not a workday goes by) that I’m not talking about the importance of optimizing the customer journey. But, it’s not just about acquiring new customers and cross-selling new products. It’s about creating a relevant, satisfying and valued customer experience.

As I look to our SAS Customer Intelligence customer base, I am reminded that we constantly work to improve their experience. Two areas that need attention are around the adopt and use phases of their experience with SAS.

Getting CI help just got easier

How can we make it easier for users to get started, ask how-to questions, get peer-to-peer support and seek advice from SAS experts? I am very excited that today at SAS Global Forum, we announced two new resources for customer intelligence customers to achieve these goals.

First, we are launching a SAS Customer Intelligence Community.  This new online discussion forum for CI users makes it easier to:

  • Make connections. Meet other CI users, like their responses and fuel conversation by commenting on posts and swapping tips and tricks.
  • Find answers and ask questions. Have a question? Search to see if your question has been answered. If not, register and click the big, blue New Message 151811174button and ask for help.
  • Give feedback. Give advice and share best practices from your experience. The SASWare Ballot lets you recommend product improvements.
  • Learn faster. Whether you’re new to CI or a seasoned CI user who wants to learn something new, you can learn faster with access to knowledgeable experts to guide you.
  • Be recognized for your achievements. Icons on your avatar let others know your community participation status. As you participate, you earn badges, level up and earn new privileges.

Getting started info, free tutorials and advanced techniques – all in one place

We are also launching a new way for customers to get started using SAS software. SAS has historically provided lots of great resources to find information and get started.  But, all too often, it wasn’t easy to figure out where to start and where to stop.

So, several cross-divisional teams invested months in determining how to make it easier for customers to get started with SAS software and find the information they need to be successful.

Well, good news.  The time is here.

At SAS Global Forum, as we announced SAS Customer Intelligence 360, a new offering in the SAS Customer Intelligence suite, we also debuted Learn SAS Customer Intelligence 360. This pilot learning center includes getting started info, free tutorials and more. We’re creating similar learning centers for other SAS products.

How're we doing?

Help us keep raising the bar on the customer journey.

We’d love your feedback!

Post a Comment

SAS Customer Intelligence 360: Digital discovery and engagement brought into focus

Just last weekend, I was considering buying a new camera lens. I already had a few brands in mind, so I looked online at their websites to learn more about their product information. I was able to conduct a comparison on different brands and lenses to narrow down to a specific 50mm lens provided by a major brand. I added the lens to my cart online, but wanted to get a closer look of it, so I chatted online with a representative to see if there were any lenses available at stores near me. This digital channel was my first point of interaction with the brand, but what impact did that have on my buying experience? Would responsive design come479424735 into play? Would the brand proactively contact me about similar products? Or would they simply react to inquiries that I had as a consumer? But today’s consumers expect immediate, individualized messages – would this brand deliver?

The fact of the matter is that a lot of brands don’t have the capabilities to modify messages, offers and interactions across channels, devices and points in time so that they are more relevant to the end consumer.

 Enter SAS

SAS Customer Intelligence 360, launching this month to the marketplace, offers an all-encompassing view of customers no matter how they choose to engage with you across digital properties.

A complete customer view

SAS Customer Intelligence 360 can give you detailed insights from digital channels customers interact with to create the most effective and relevant actions. The solution rapidly transforms digital data into a complete 360-degree view of the customer, meeting each customer’s needs at the right time, place and in proper context. Multiple decision-making methods, such as predictive models and multivariate tests, help ensure that customers gets the most relevant and personalized offers.

Data integration

Data is also easy to integrate with many offline customer channels though SAS Customer Intelligence 360 and its customer decision hub. Customer interactions are based on previous engagements on all other platforms. The data hub is able to convert all of this into customer-focused actions. With this data integration, the Customer_decision_hubbrand is able to gather my interactions and information from all available sources; not just the website, but the call center, mobile apps, social media and point of sale.

Offline customer data can be appended to digital data to further augment the view of me as a customer. These data sources, typically demographic or transactional in nature, gives marketers valuable insight into a customer’s true needs in order to create more relevant offers, better targeted activities and more efficient use of marketing resources. This capability allows the brand to see me more than just page clicks. They’ll see me as a father with young children, interested in photography and seeking to buy a 50mm lens to capture fleeting family moments.

Insights into future actions

You don’t need to be a data scientist to harness the power of predictive marketing; SAS Customer Intelligence 360 includes guided analytics to provide marketers a forward-looking view of customer journeys. This enables them to better understand business drivers and incorporate them into segmentation, optimization and other analytic techniques. Marketers can better forecast how customers will perform in the future. The solution acts as the data scientist – enabling marketers to become more efficient and effective in the analytical techniques they embed into marketing initiatives.

Web data collection

Each web page is embedded with a single line of HTML that automatically collects page information without expensive tagging. With this feature, the webpage configuration might change simultaneously with what I click on, the order and timing of my clicks, each keystroke, etc. Dynamic data collection offers me more relevant content as I navigate through the brand’s site. Any customer activities are recorded privately and securely over time so that once a customer is identified, the information is connected automatically.

Simply put, SAS Customer Intelligence 360 offers marketers the confidence to manage their digital customer journeys in a more personalized and profitable way. Marketers gain a complete view of their customers and transform this data using analytical insight into customer-centric knowledge and future actions. With this solution, brands can interact with customers on a personalized level and customers will be more satisfied with their entire relationship with a brand, not just a single transaction. Customer loyalty goes up and attrition goes down.

And as for me, I got the lens I was looking for, and was satisfied with the customer experience. Of course I have ideas on how to improve it on behalf of this brand, and SAS Customer Intelligence 360 fits into that picture.

Post a Comment

Structured versus unstructured data in retail

Of course everyone has heard all the hype on big data and how it can help business’ become more successful. But have you thought about the different types of big data? How the different types of data can support different initiatives within your business?

Structured versus unstructured data in retail is a key topic to first understand in order to create a successful plan. Structured data is data that sits in a database, a file, or a spreadsheet. It is generally organized and formatted. In retail, this data can be point-of-sale data, inventory, product hierarchies, ect. Unstructured data does not have a specific format. It can be customer reviews, tweets, pictures, and even hashtags.

So now that you know what structured versus unstructured data in retail is, let’s talk about how to use it. Customer reviews are a great way to understand why a certain product is or isn’t working. Word clouds are a tool to visualize large amounts of customer reviews. Finding key words that are continuously being used canRetail-Transaction_50B9900 give insight in to product defects. For example, if ‘fits small’ is frequently used then you can be proactive by adding this to the product description or above the size selection. This will reduce customer returns and money lost on shipping fees.

Unstructured data can also be analyzed for sentiment analysis. This gives insight in to whether the customer’s response is positive, negative, or neutral. A great example of this is being able to analyze your customer’s twitter responses. Let’s say you post a tweet with products you are thinking about buying for your spring line and your brands hashtag. This enables retailers to understand your customers’ response before you even buy the product. This technique can also be used in-season and give insight to merchants on areas of opportunity or risk so that open to buy can be managed. Break down the silos between merchandising and marketing and enhance collaboration.

It doesn’t take a data scientist to use unstructured data analytical techniques either. If you’re looking to use unstructured data in your business process, check out more information on SAS Visual Analytics. Also, take a look at the 2015 Forrester Wave report where SAS was named a leader in Big Data Predictive Analytics Solutions.

Post a Comment

Introduction to SAS for digital personalization and attribution

As promised a couple of weeks ago, I am very happy to share Part 2 of a webcast series highlighting how SAS participates in the space of digital analytics for data-driven marketing with applications for personalization and attribution. Before launching the video, let me set some context for what you are about to see.

Why do we care about the intersection of digital analytics and personalization? Honestly, it is increasingly important to predict how customers will behave so you can personalize experiences with relevance. The deeper your understanding of customer behavior and lifestyle preferences, the more impactful personalization can be. However, digital personalization at the individual level remains elusive for most enterprises who face challenges in data management, analytics, measurement, and execution. As customer interactions spread across fragmented touch points and consumers demand seamless and relevant experiences, content-oriented marketers have been forced to re-evaluate their strategies for engagement. But the complexity, pace and volume of modern marketing easily overwhelms traditional planning and design approaches that rely on historical conventions, myopic single-channel perspectives and sequential act-and-learn iteration.

The majority of technologies in use today for digital personalization have generally failed to effectively use predictive analytics to offer customers a contextualized digital experience. Most are based on simple rules-based recommendations, segmentation and targeting that are usually limited to a single customer touch point. Predictive MarketingDespite some use of predictive techniques, digital experience delivery platforms are behind in incorporating predictive analytics to contextualize experiences using 1st-, 2nd- and 3rd-party customer data. In my opinion, I believe the usage of digital data mining and predictive analytics to prioritize and inform the marketing teams on what to test, and to analytically define segment audiences prior to assigning test cells, is a massive opportunity. Marketers are very creative, and can imagine hundreds of different testing ideas – which tests do we prioritize if we cannot run them all? This is where advanced analytics can help inform our strategies in support of content optimization, as it allows the data to prioritize our strategy, and help us focus on what is important.

Moving on to our second subject of interest, we transition to the wonderful world of marketing attribution. At the very core of this topic, modern marketers recognize that customers expect brands to deliver relevant conversations across all channels at any given moment. The challenge is to uncover the interactions that drive conversions through integrated measurement and insights. However, organizations struggle to employ a holistic measurement approach because:

  1. It's confusing to distinguish among the measurement approaches available.
  2. Marketers bombard customers with extraneous content.
  3. Today's misaligned data makes customer level measurement a very difficult task.

It seems like attribution has been a problem for marketers for a very long time. According to a popular quote by Avinash Kaushik of Google:

“There are few things more complicated in analytics (all analytics, big data and huge data!) than multichannel attribution modeling."

The question is: Why is it challenging? SAS strongly believes three years later that we are living in a game-changing moment within digital analytics. Marketers are being enabled with approachable and self-service analytic capabilities, and this trend directly impacts our ability to improve our approaches to problems like attribution analysis. However, rules-based methods of attribution channel weighting continue to be far more popular in the industry to date, which contradicts the recent analytic approachability trend. The time has arrived for algorithmic attribution . . . Attribution

 

Did I whet your appetite? I hope so...please enjoy episode two of our two-part webcast series, now available for on demand viewing:

 

SAS for Digital Analytics: Personalization and Attribution [Part 2]

 

SAS Customer Intelligence offers a one-stop modern marketing platform to comprehensively support the objectives of predictive personalization and algorithmic attribution - from digital data collection, management, predictive analytics, omnichannel journey orchestration, delivery across online and offline channels, and measurement. On April 19 at SAS Global Forum 2016, SAS Customer Intelligence 360 will make its debut, and subjects like digital intelligence and predictive personalization will be primary topics. This new offering will drive unprecedented innovation in customer analytics and data-driven marketing, putting predictive analytical intelligence directly in the hands of digital and integrated marketers responsible for the customer experience.

If you enjoyed this article, be sure to check out my other work here. Lastly, if you would like to connect on social media, link with me on Twitter or LinkedIn.

Post a Comment

The role of contextual marketing for in-store sales

All of us we have had the unfortunate experience of going to a store and encountering a salesperson who is unable to give us expert advice about a product or service. It’s not because salesperson is unwilling to help us, but rather because he or she does not know in enough about the products the company sells.

In fact, the Retail in Belgium survey carried out by Vlerick Business School and Insites Consulting revealed that "not less than 44 percent of consumers feel they know more than the seller about [a] product, after searching online information.” I’m sure these numbers are similar in other countries.

Another challenge for in-store sales is managing the peaks and uneven shopping traffic throughout the day, week or year while having enough competent salespeople for floor coverage.

Are brick-and-mortar operators losing ground over what was considered their strength to ecommerce – expert knowledge? Fortunately, it’s not a bleak as it appears. Traditional retailers have options, but they must be innovative and aggressive to challenge current trends.

Data management and analytics to the rescue

We know that shoppers often use the web to research products before visiting a store, but how can retailers add value once shoppers enter the store? That's where contextual marketing play an important role.Albert pic

Recent technologies such as iBeacons and wi-fi tracking enable retailers to recognize and accurately locate customers as they travel through a store. The next step is persuading a customer to download and enable an app that allows a retailer to better understand individual shopping behavior. The enticement for shoppers is that retailers can make in-store offers in real time via push notifications.

For price-conscious shoppers, downloading an app means they won’t miss out on any promotions. For others, the incentive is learning about new products or offering an improved shopping experience. Being able to meet these goals requires detailed knowledge of individual buying motives. Customer segmentation and creating a customer typology will help.

Once your tracking strategies are enabled, centralized data management for phygitals, both physical and digital data sources, will improve the level of service. The app enables a store to recognize when a shopper enters the store, and using the customer’s transactional history and other data (such as recent online research on the company website), the retailer can improve and enhance the customer experience.

For example, using recommendation engines, you can propose related products based on its location in the store. And all this in real time please because in this context, "right time is real time." If you want to know more about how predictive analytics makes offers more relevant, do not hesitate any longer and read the excellent blog post written by my colleague Adrian Carr about the topic.

The application can also be used by customers to request product/service assistance during their store visit. The sales staff can quickly access information about the customer to better respond to their inquiries.

Needless to say, a customer needs to have a positive initial experience with the app or it will become just another unused app on their smartphone.

If you want to find more information about how SAS enhances the customer experience through contextual marketing, have a look at SAS® Real-Time Decision Manager.  You can also look at our Customer Decision Hub approach to managing customer interactions across all channels.

Post a Comment