Tag: machine learning

Advanced Analytics | Analytics | SAS Events
SAS Global Forum 2019 論文紹介シリーズ 第3回「オペレーショナル・アナリティクス for Data Scientist」

今回は「オペレーショナル・アナリティクス for Data Scientist」をメインテーマとしてご紹介します。企業で分析業務を行うデータサイエンティストの皆様はご存知の通り、モデルは開発しただけでは意味がありません。そのモデルを業務に実装(デプロイ)してはじめて、ビジネス課題を解決し、価値を創出することができるわけです。SASが長年蓄積してきたナレッジをご覧ください。 1.Using SAS® Viya® to Implement Custom SAS® Analytics in Python: A Cybersecurity Example この論文は、SASの分析機能により支えられているプロダクションレベルのアナリティクスソリューションを開発しようとしているデータサイエンティストを対象としています。本文では、SAS ViyaとCloud Analytics Service(CAS)に基づく、CASの構築基盤とサイバーセキュリティを説明します。そして、SASアナリティクスを本番環境でPythonで実装する方法を説明します。 2.What’s New in FCMP for SAS 9.4 and SAS Viya この論文では、下記いくつかポイントをメインとして議論していきます。まず、SASが提供しているFunctionコンパイラー(FCMP)の新しい特徴を紹介し、それから主にFCMPアクションセットを中心とし、リアルタイムアナリティクススコアリングコンテナ(ASTORE)とPythonのインテグレーションについても説明します。それらの説明により、SASの新しいテクノロジーに対し、更なる理解を頂けることを期待しています。 3.Influencer Marketing Analytics using SAS® Viya® この論文はSAS Viyaを使って、マーケティングアナリティクスを行う事例を紹介します。近来、マーケティングはますますインフルエンサーが大きな役割をしめるようになってきています。それらのインフルエンサーたちはソーシャルメディアのコンテンツ作成者であり、多くのフォロワーを持ち、人々の意見に影響を与え、購入を検討する人々にも影響を与えています。インフルエンサーマーケティングは、より伝統的なマーケティングチャンネルと同じようにコストがかかるため、企業にとって最も効果的なインフルエンサーを選択することは非常に重要です。 こういった背景において、この論文では、ソーシャルメディアで本当に影響力をもつ人、そしてその影響程度はなにかについて分析することを目指しています。ケーススタディは、感情面の影響を与えることに焦点を当てています。また、多くのフォロワーを持つインフルエンサーとその色んな投稿とアクティビティを分析します。実施するには、Pythonのライブラリとコードが使用されます。次に、彼らのアクティビティとネットワークを分析して、それらの影響範囲を分析します。これらの分析には、SAS Viyaのテキストおよびネットワーク分析機能が使用されます。データ収集ステップ(Python)はクライアントとしてJupyter Notebookを使用していますが、分析ステップは主にSAS Visual Text Analytics(Model Studio)とSAS Visual Analyticsを使用して行われています。 4.Take

Advanced Analytics | Customer Intelligence
Suneel Grover 0
SAS Customer Intelligence 360: Hybrid marketing and analytic's last mile [Part 2]

In part one of this blog series, we introduced hybrid marketing as a method that combines both direct and digital marketing capabilities while absorbing insights from machine learning. In part two, we will share perspectives on: How SAS Customer Intelligence 360 completes analytic's last mile. How campaign management processes can easily

Advanced Analytics | Machine Learning | SAS Events
SAS Global Forum 2019 論文紹介シリーズ 第2回「PythonからSAS9を活用するコーディング事例紹介」

前回に引き続き、SAS Global Forum 2019で公開された論文をご紹介します。今回は、SASユーザを含め、SAS言語とオープンソース言語の機能を共に活用することで、様々なビジネス課題に対応できるようなコーディング事例をいくつかピックアップします。 1.Deep Learning with SAS® and Python: A Comparative Study ご存知の通り、SASはディープランニングに関する専門性の高いかつ豊富な機能と製品を提供しています。この論文では、SASとPythonに対し、それぞれ違うデータタイプ(例えば:構造化と非構造化、イメージ、テキスト、シーケンシャルデータ等々)を使ったディープラーニングのモデリングを比較する論文となります。主にSAS環境でのディープランニングフレームワーク、そして、SASとPython言語のディープランニングプログラミングの違いによって、それぞれのメリットとデメリットの紹介となります。 2.Utilization of Python in clinical study by SASPy Pythonは近年最も使われているプログラミング言語になってきました。そして現在、機械学習とAI領域でもよく使われています。Pythonの一番のアドバンテージはその豊かなライブラリを通じ、多種多様な分析をインプリメントできることです。SASは臨床研究領域で最も強力な分析製品でありながら、さらにPythonを使うことによって、そのレポーティング機能、例えば、データ管理、データ可視化を拡張できます。これもSASプログラマーユーザのキャリアに対し、潜在的なメリットです。その様な背景において、SASPyはその可能性を実現します。SASPyはPythonコードの中でSASのセッションをスタートできるPythonパッケージライブラリとなります。この論文では、基本的なSASPyの使用方法とSASのデータセットを処理するヒントについて紹介しています。そして、Pythonを使って、臨床研究で使えそうなレポーティング機能について検討します。 3.Everything is better with friends: Executing SAS® code in Python scripts with SASPy SASPyはSASがPythonプログラミング用に開発したモジュールで、SASシステムに代わるインタフェースを提供しています。SASPyを通じて、SASプロシージャはPythonスクリプトと構文で実行することができ、かつ、SASデータセットとそれに相当するPythonデータフレームの間にデータを転送することも可能です。それにより、SASプログラマーはPythonの柔軟性を利用してフロー制御を行うことができ、PythonプログラマーはSAS分析をスクリプトに組み込むこともできます。この論文では、Pythonスクリプト内で通常のSASコードとSASPyの両方を使用した一般的なデータ分析タスクの例を幾つか紹介し、それぞれの重要なトレードオフを強調し、多種プログラミング言語ユーザになれることの価値を強調しています。SAS University Edition用のJupyterLabインタフェースを使用し、それらの例を再現するための説明も含まれています。それらのSASとPythonのインテグレーション例はJupyter Notebookとしてダウンロードできます。 ダウンロード:https://github.com/saspy-bffs/sgf-2019-how 4.Modeling with Deep Recurrent Architectures: A Case Study of

Advanced Analytics | Analytics | Customer Intelligence | Data Management | Data Visualization
Suneel Grover 0
SAS Customer Intelligence 360: Automated AI and segmentation [Part 3]

In parts one and two of this blog series, we introduced the automation of AI (i.e., artificial intelligence) and natural language explanations applied to segmentation and marketing. Following this, we began marching down the path of practitioner-oriented examples, making the case for why we need it and where it applies.

Advanced Analytics | Analytics | Customer Intelligence | Data Management | Data Visualization
Suneel Grover 0
SAS Customer Intelligence 360: Automated AI and segmentation [Part 2]

In part one of this blog series, we introduced the automation of AI (i.e., artificial intelligence) as a multifaceted and evolving topic for marketing and segmentation. After a discussion on maximizing the potential of a brand's first-party data, a machine learning method incorporating natural language explanations was provided in the context

Advanced Analytics | Analytics | Artificial Intelligence | Customer Intelligence | Data Management | Data Visualization | Machine Learning
Suneel Grover 0
SAS Customer Intelligence 360: Automated AI and segmentation [Part 1]

Marketers and brands have used segmentation as a technique to deliver customer personalization for communications, content, products, and services since the introduction of  customer relationship management (i.e., CRM) and database marketing. Within the context of segmentation, there are a variety of applications, ranging from consumer demographics, psychographics, geography, digital behavioral

Analytics | Artificial Intelligence | Machine Learning
Héctor Cobo 0
Analítica, un pilar fundamental de la innovación empresarial

Hoy en día, las organizaciones necesitan analítica de alto rendimiento para mejorar todos sus indicadores de negocio, ya no es un lujo: es una necesidad. La transformación digital y el análisis empresarial son una prioridad en la agenda de muchas empresas que buscan destacar en un mundo hiper competitivo que

Analytics | Artificial Intelligence
Rainer Sternecker 0
Machine Learning als Automatisierungsturbo

Datenmanagement alles andere als eine neue Disziplin. Dennoch verändert sich der Umgang mit Daten angesichts neuer Technologien wie künstliche Intelligenz (KI) und Machine Learning ebenso sehr wie die Analyse dieser Daten. Heute hat so ziemlich jedes Unternehmen moderne Datenmanagement-Werkzeuge im Einsatz, doch die angewandten Praktiken und Strategien stammen vielfach noch

Analytics | Machine Learning
Les Bots : nouvelle vague de la 4ème révolution industrielle

Et si, en dehors de la nouvelle organisation des moyens de production, la 4ème révolution industrielle induisait également une évolution significative dans la gestion de la connaissance intrinsèque à chaque domaine ? Et si les nouvelles technologies numériques permettaient aux acteurs opérationnels d’accéder simplement à cette connaissance, le plus souvent fruit de méthodes

Analytics | Machine Learning
David Tareen 0
Malignant or benign? Cancer detection with SAS Viya and NVIDIA GPUs

According to the World Cancer Research Fund, Breast cancer is one of the most common cancers worldwide, with 12.3% of new cancer patients in 2018 suffering from breast cancer. Early detection can significantly improve treatment value, however, the interpretation of cancer images heavily depends on the experience of doctors and technicians. The

Fraud & Security Intelligence
Yuri Rueda 0
Los sistemas de prevención del fraude impulsan el crecimiento de una nueva generación de aseguradoras

El fraude en seguros siempre ha existido, presentándose de diferentes maneras para adaptarse a cada época. Hoy en día, la magnitud del fraude en seguros no solamente es sorprendente, sino que aumenta. Las actividades fraudulentas prevalecen a lo largo de todo el ciclo de vida de la póliza. A medida

Analytics | Artificial Intelligence | Machine Learning
Charlie Chase 0
Is machine learning practical for statistical forecasting?

There's been a lot of hype regarding using machine learning (ML) for demand forecasting, and rightfully so, given the advancements in data collection, storage, and processing along with improvements in technology. There's no reason why machine learning can't be utilized as another forecasting method among the collection of forecasting methods

Analytics
Rodrigo Arias 0
La oferta perfecta, a la persona correcta, en el momento justo

El uso de herramientas de analítica avanzada permite a las organizaciones desplegar capacidades de “Customer Decisioning” para entregar a sus clientes una experiencia de consumo excepcional, gracias a una mayor relevancia en cada interacción. En la actualidad, los clientes esperan una experiencia perfecta, altamente personalizada y relevante ya sea en

Advanced Analytics | Artificial Intelligence | Internet of Things | Machine Learning
Christian Goßler 0
Lenins Werk und Lehmanns Beitrag zum Internet of Things (IoT10)

Lenin ist sauer, saurer sogar, als es Bolschewiken-Art ist. „Ich habe Ihre IoT-Blogs gelesen“, sagt er. Und er ist sauer. Noch auf dem SAS Forum in Bonn hatte er unsere Zusammenarbeit gepriesen und den Stellenwert von Datenanalyse und künstlicher Intelligenz hervorgehoben. Auch Lenins Mitarbeiter waren dort gewesen, die Hornbrillen-Dame und

1 2 3 10