Students & Educators

Discover how SAS is shaping tomorrow’s brightest analytical minds

Students & Educators
Staci Lyon 0
Supporting Teaching and Learning with Crio and Graphic Organizers

Crio, the free, online lesson-building tool from Curriculum Pathways, now enables you to incorporate graphic organizers into your Crio lessons! Graphic organizers allow students to interact even further with the content of your Crio lessons. Within the organizers, they can visually organize thoughts, brainstorm concepts, classify ideas, and demonstrate relationships between

Data for Good | SAS Events | Students & Educators
0
第1回「データサイエンティストのキャリアと活躍のかたち」レポート

先日、-データサイエンティストに求められる「本当の役割」とは-のブログ記事内で紹介されたデータサイエンティストを目指す学生向けのセミナー「データサイエンティストのキャリアと活躍のかたち」の第1回が11/30(金)に開催されました。この記事では、当日の様子をお伝えします。 セミナーの内容は、データサイエンティストのキャリアと活躍の場や、ビジネスではアナリティクスがどのように活用されているかについて、スピーカーがこれまでの経験をもとに紹介するものです。今回は初回のセミナーということで、講演前にSASが学生向けに実施している取り組みの紹介と、データサイエンティストの役割であるデータを利用しビジネス課題の解決を図るという一連の流れを確認しました。   データサイエンティストに必要な資質 はじめに、データサイエンティストのキャリアについて株式会社GEOJACKASS大友さんの講演です。大友さんは、複数の企業・大学でのデータサイエンス業務の経験がある方です。 まず、JAXAに勤務していたときの業務内容の一例ということで、月周回衛星「かぐや」と小惑星探査機「はやぶさ」のデータを扱って周回軌道の可視化などに携わっていたことを実際の画像とともに説明していました。そして、データサイエンティストの業務の大部分は可視化とデータクレンジングを含む集計作業なので、まずは可視化から始めることを意識してほしいとのことでした。 つぎに、趣味の釣りを題材としたデータ分析の話です。釣りは常に一定の成果が得られるわけではなく、全く釣れない日もあれば、突然100尾釣れる日が続くこともあります。この急上昇する時期をピンポイントで当てようとデータをもとに予測システムを構築することを考えていました。そこで釣果予測をするために観測衛星から海水温、海上風速のデータ、海上保安庁から海流のデータを収集し、自治体の管理公園やTwitter、釣具屋にアップされている情報から過去の釣果実績のデータを収集してこれらを一括で管理する仕組みをつくりました。 こうして収集、整形したデータを利用した分析結果をもとに、宮城にヒラメ釣りに行くと、8枚釣ることができたそうです。また、そのほかの魚も大漁でした。ちなみにヒラメは一度の釣りで1枚釣れたら良いと言われているそうです。このシステムは開発途中とのことですが、仕事ではなくても趣味でデータサイエンスの実践は可能だということです。さいごに、この釣果予測で使った気象データが、仕事であるデータサイエンス業務のなかで役立ったケースを挙げ、自分の趣味、好きなことややりたいことを追求するのが最も大事なことで、技術はあとからついてくる。つまり、まずは目的を持つことが重要だというメッセージを学生に強く伝えていました。   データ活用とアナリティクス・ライフサイクル つぎに、ビジネスにおけるアナリティクスについてSAS Japanの畝見による講演です。 導入では、アナリティクスに関するキーワードである「機械学習」「ディープラーニング」「人工知能(AI)」などを一枚の図に整理し、それぞれの単語について説明をしていました。 前半は、ビジネス課題の解決にアナリティクスが活用されている事例の紹介です。「顧客理解・マーケティング分析」分野では、ダイレクトメールの配信を効果的にするためにどういった顧客をターゲットにすればよいかを探索する事例、商品の購入履歴や商品への評価をもとに顧客へおすすめ商品を提案するため用いられている決定手法の説明がありました。「不正検知」分野では、マネーロンダリングなどの不正行為を検知するために用いられている複数の手法の説明があり、「品質管理・異常検知」分野では、教師なし学習による異常検知の説明と、実際に航空会社においてエンジン部品故障を予測するために部品のセンサーデータを利用し、修理が必要な状態になる20日以前に故障の予兆を検知し可視化することを実現した事例の紹介がありました。また、品質管理ではブリヂストンにおけるタイヤ生産システムを自動化し品質のばらつきを低減した事例や、ある半導体メーカーは、従来の品質管理の取り組みに加え、ディープラーニングを取り入れた画像認識技術を追加して品質管理を強化しているなどアナリティクスの進化が応用されている事例の紹介がありました。 他にも、スポーツ関連企業では、スタジアムにあるカメラでサッカー選手の背番号を撮影し、各選手のパフォーマンスを分析するため、ディープラーニングによる画像認識が用いられているなどさまざまな業務・業種でアナリティクスが利用されているとのことです。 後半は、AIとアナリティクス活用の課題と対策についての話です。まず、とある企業でAI・機械学習を導入するプロジェクトがうまくいかなかったストーリーを提示して、データ活用とアナリティクスで成果を出せない理由を以下の3つに分類しています。 データハンドリングの課題(取得・加工・品質・準備) モデリングの課題(スキル課題や結果の一貫性など) モデル実装の課題(価値創出とガバナンス、実行と評価) ここで、「データ活用とアナリティクスで成果を出す=ビジネス課題の解決」には、 Data:アクセス、クレンジング、準備 Discovery:探索、分析、モデル生成 Deployment:モデル管理、組み込み、モニタリング の一連のプロセスからなる循環的な取り組み(アナリティクス・ライフサイクル)が必要だとし、ひとつひとつのステップについての説明がありました。そして、ビジネス価値の創出には、「"問い"→データ準備→探索→モデリング→"問い"→実装→実行→評価→"問い"」という8の字のアナリティクス・ライフサイクルも効果的であるという説明がありました。 さいごに、データサイエンティストの役割として求められることはビジネス価値の創出に貢献することで、そのためにはアナリティクス・ライフサイクルを迅速かつ丁寧に進めることが重要だと伝えていました。   SAS student Data for Good communityの紹介 セミナー内では、学生によるデータサイエンスの学びの例ということで、データを活用して社会的な課題を解決する「Data for Good」への取り組みを発表しました。そして、学生が集まってData for Good活動をするサークル「SAS student Data for Good community」を発足することと、その活動内容や意義についての説明をしました。第2回セミナーで追加的な情報をお伝えする予定です。   講演のあとには、軽食をとりながら講演者と参加者で歓談をしました。さまざまな専攻・学年の方が参加しており、講演者への質問や参加者どうしの会話が絶えず貴重な交流の場となりました。   次回の学生向けセミナー「データサイエンティストのキャリアと活躍のかたち」は1月31日(木)に開催予定です。みなさんの参加をお待ちしております。  

Students & Educators
Jen Sabourin 0
So, What Is Computer Science?

  We're kicking off Computer Science Ed Week 2018, and we couldn't be more excited! It’s hard for us to believe, but people outside the field sometimes fail to share that excitement. Again and again we’re asked, "What is computer science?" So we’ve developed an answer that will help transform those puzzled shrugs into nods

Students & Educators
Molly Farrow 0
Celebrate Bridging the Digital Equity Gap

The world’s largest and most comprehensive social studies professional development conference is NCSS. This year's gathering of teaching professionals from across the country offers a perfect opportunity to showcase the latest FREE online social studies lessons from Curriculum Pathways. It offers 700+ free social studies tools and resources, each addressing the enhanced rigor and critical

Students & Educators
データサイエンティストに求められる「本当の役割」とは

最近、SNSなどで「AI開発ミステリー ~そして誰も作らなかった~」という記事が話題になりました。人工知能(AI)を導入しようという企業の最悪の顛末をコミカルに描いたジョーク・ストーリーですが、これを面白がる人が多いというのは、多少なりとも日本のIT業界の現実を反映しているのかもしれません。 このような事態になっているのは、AIに対する過度な期待が原因の一つかもしれません。AIは、機械に任せれば素晴らしいことが起こる魔法ではなく、明確に定義されたタスクを実行するように機械をトレーニングする方法です。人間が行うタスクを機械が代替することになるのですが、人間が活動しているシステムのなかで、どの部分を機械にやらせるかを考え、実装し、運用しなければなりません。これは、これまでSASが実現してきたアナリティクスの延長にほかなりません。 「AIが発達すればデータサイエンティストはいらない」という説もあります。データサイエンティストが機械学習を実装する役割だけを持つのであれば、そうかもしれません。しかし、本当に必要とされる仕事が「人間が活動するシステムの中でのアナリティクスの活用」であるなら、まさにAIが使われる仕組みを考え、実装し、運用できる状態にする人材こそが求められているのではないでしょうか。 今年5月、SAS Forum Japan のなかで開催された「データサイエンティスト・キャリア・トラック」では、アナリティクスを活用する組織のなかでデータサイエンティストがどのように活躍するかについて、企業の方々から学生向けの講演をいただきました。例えば、ITや数理モデルを使いこなせることは初級レベルで、ビジネススキルを身に着けながら、最終的には経営幹部候補となるキャリアパスを提示している組織や、一方で、趣味で培ったスキルをビジネスに生かすデータサイエンティストがいます。このように、データサイエンティストのキャリアは組織・個人によってさまざまですので、多様人材がそれぞれの強みをもって活躍することができそうです。 しかし、どの組織・個人でも共通しているのは「目的志向」である点です。何のためにデータ分析をするのか、それがどのような価値を持つのかを明確にしなければ、課題解決のためのデータ分析はできません。データサイエンティストは単にデータ分析の技術で課題解決するだけでなく、「課題設定」をする役割を持たなければ本当の価値は生み出せないのです。そもためには、さまざまな問題意識を抱える人たちと異業種交流をするなど、幅広い視野が必要となりそうです。 データサイエンティスト協会が示した3つのスキルのうち、「ビジネススキル」については、ときどき「ドメイン知識」(業界や業務についての知識)として紹介されることがあります。しかし、本当に必要なのは、その知識を解決すべき課題に変換する力だと考えます。データサイエンティストを目指す学生が、すべての業界・業務についての知識を得ることは難しいですが、アナリティクスが活用される代表的な業界において、どんな課題がどのようにアナリティクスにより解決されているかを知ることで、応用力を身に着けられるのではないでしょうか。そこで、SAS Japanでは、次のような内容の学生向けセミナー「データサイエンティストのキャリアと活躍のかたち」をシリーズで開催します。 データサイエンティストのキャリア ... 「データサイエンティスト・キャリア・トラック」の講師陣による、それぞれの組織や個人としてのデータサイエンティストのキャリアや活躍のかたちを紹介 ビジネスで活用されるアナリティクス ... データサイエンスやアナリティクスがどのような業界のどんな課題を解決するために活用されているかをSAS社員が紹介 学生によるデータサイエンスの学び ... 学生がどのようにデータサイエンスを学習しているかを学生自身による体験を交えながら紹介 第1回は11月30日(金)に開催します。データサイエンティストを目指す学生の皆様のご参加をお待ちしています。

Analytics | Artificial Intelligence | Students & Educators
Andreas Becks 0
AI and the fear for your job: How an emotional debate can become a factual and constructive discussion

Will AI dramatically accelerate the division of our society into the “elite” and the “worried rest”? For example, will there be highly effective personalized medicine that only very few can afford? Will AI take over the automatable jobs of the middle class, while the highly qualified elite maintains or even

Artificial Intelligence | Customer Intelligence | Students & Educators
Mayra Pedraza 0
Data, models and accountability: AI education for marketers

Developments in artificial intelligence (AI) are expected to change the world of work across the board. We have already witnessed the impact on marketing communication endeavours and strategies. The ripples spreading across the water include ethical issues and questions of accountability. I caught up with Anabel Gutiérrez, Senior Lecturer in

Analytics | SAS Events | Students & Educators
SAS Global Forum 2019 で発表しよう(学生向けプログラムあり)

全世界のSASユーザーが集う年次のイベント SAS Global Forum。 次回は2019年4月28日から5月1日まで、米国テキサス州ダラスで開催予定です。 現在、SAS Global Forum 2019での発表演題を募集しています。 本イベントは、600を超えるセッションでワークショップ、プレゼンテーション、e-ポスター、デモおよび交流プログラムが用意されており、アナリティクス活用についての事例やテクノロジーが多数紹介されます。昨年は5400人もの登録者があり、世界中のデータサイエンティストと情報交換が可能です。(2017年の様子を過去のブログで紹介しています。その1, その2, その3) 学生向けのプログラムも用意されており、多くの大学生・教育関係者が参加します。 Student Ambassador Program ... 「学生大使」として無料でイベントに招待(旅費や宿泊代もサポートされます!) Student Symposium ... 学生がチームで戦うコンテスト。ファイナリストはイベントに招待されます。 Academic Summit ... 学生と教育関係者向けの講演と交流プログラム。昨年、参加した日本の学生によるレポートはこちら。 ビジネスやアカデミアのユーザーが一堂に会するグローバルイベントで、学生が自身の分析・研究・提案を発表することで、ビジネスやアナリティクスの専門家からのフィードバックにより自身のアイデアを深めると同時に、国際的にネットワークを広げることができます。 まずは、10月22日の締切までにアブストラクトを投稿しましょう! SAS Japan アカデミア推進室では、投稿に向けて学生の皆さんをサポートいたします。 興味のお持ちの方は JPNAcademicTeam@sas.com までご連絡ください。

Analytics | Artificial Intelligence | Students & Educators
Andreas Becks 0
KI und die Angst um meinen Job: Wie eine emotionale Debatte zu einer sachlichen und konstruktiven Auseinandersetzung werden kann

Wird KI die Spaltung unserer Gesellschaft in die „Elite“ und den „besorgten, abgehängten Rest“ dramatisch beschleunigen? Zum Beispiel durch hocheffektive personalisierte Medizin, die sich nur wenige leisten können? Oder den Wegfall von automatisierbaren Jobs im Mittelstand, während die hochqualifizierte Elite ihre Machtpositionen beibehält oder gar ausbaut? Oder bietet sich nicht

1 2 3 4 5 25

Back to Top