Author

RSS
Academic Staff

公共ソリューショングループ / 東京医科大学大学院医学研究科 生物統計学(Biostatistics)と統計的因果推論(Causal Inference)を専攻しています。お気軽にご連絡ください。

Analytics | Students & Educators
0
時間依存性治療(time-varying treatments)の因果推論:概論

注) 本コラムは『経時的に変化する治療(Time-varying treatments)に対する因果推論』と題した以前のコラムを、時間依存性治療に関する部分と周辺構造モデルにおけるIPTW法に関する部分に分割し、内容の追加と修正を行い再構成したものの一部となります。   はじめに 多くの統計的因果推論に関する書籍や文献では、ある治療※1が単時点で行われる場合の因果効果の推定手法について紹介がされています。しかし、治療が複数の時点にわたって実施され、その一連の治療による効果に興味があるという状況も存在するかと思います。例えば、新型コロナワクチンの接種が我々に身近な例として挙げられ、これ以外にも顧客に対する商品のレコメンデーションなど医学分野に限らず様々な例が挙げられます。 正確な定義は後述しますが、上記で挙げたような複数の時点において実施され、かつ各時点での値が異なりうる(時間経過とともにとる値が変化しうる)治療は、時間依存性治療(time-varying treatments)と呼ばれます。時間依存性治療に対する因果推論へのニーズは、近年の統計的因果推論という言葉自体の認知の広まりや個別化医療への関心の高まりに相まって増加しています。一方で、その統計学的理論の理解は点治療の状況と比較すると内容が高度になることや日本語での文献が少ないことからそれほど進んでいません。そこで、本コラムでは時間依存性治療に対する効果をどのように定義するか、問題となることは何か、どのように効果の推定を行えばよいかについて簡単に解説を行います。また、いくつかの代表的な推定手法についてはSASでの実装方法も併せて紹介を行います。なお、本コラムは潜在アウトカムモデルの枠組みの下での因果推論について基本的な理解があることを前提としています。適宜関連する書籍や文献、因果推論に関する連載コラムをご参照していただければ幸いです。 ※1 本コラムにおいては、介入(intervention)や曝露(exposure)など他の原因となる変数を治療(treatment)と同義的に用いて構わないものとする     因果推論を行う上での治療分類("time-fixed" or "time-varying") ある治療とアウトカムとの因果関係を議論する場合、治療はtime-fixed treatments(時間固定性治療)※2、もしくはtime-varying treatments(時間依存性治療)のいずれかに分類がされます。そして、このどちらに属するかによって扱いは大きく異なります。まず、治療が時間固定(time-fixed)であるとは、対象集団におけるすべての被験者に関して、初回の治療レベルが以降のすべての時点における各々の治療レベルを決定することを指します。この状況としては大きく3つあります。 治療が研究開始時点でのみ行われる 1つ目は、治療がベースラインやtime zeroとも呼ばれる研究やプロジェクトの開始時点でのみ行われる場合です。一般的な臨床試験で投与される被験薬・対照薬や、一回の投与で完全な免疫を与えるone-dose vaccine(e.g., 黄熱病ワクチン)などが実例として挙げられます。 初回の治療レベルが時間経過によって不変 2つ目は、初回の治療が2回目以降の治療時点においても変わらず継続的に行われる場合です。この状況の例としては、被験薬と対照薬の複数回投与が予定される臨床試験や近年いくつかの国で導入されているベーシックインカムといったものが挙げられるかと思います。 決定論的に各時点の治療レベルが定まる 3つ目は、初回の治療レベルが決定論的にその後の治療レベルを定める場合です。すなわち、初回治療での分岐以降はそれぞれ1つの治療パターンとなる場合です。例えば、A群に割り付けられた被験者は隔週で被験薬を、B群に割り付けられた被験者は毎週対照薬を投与(初回治療が被験薬なら毎週投与、対照薬なら隔週投与)されるといった実験が1つの例として考えられます。また、Aチームに配属された選手は実践練習と模擬戦を、Bチームに配属された選手は基礎練習と筋力トレーニング(初回練習が応用練習ならその後は模擬戦、基礎練習なら筋力トレーニング)をそれぞれ1日の練習メニューとして行うといったものもスポーツの領域における例として考えられます。 上記の分類からも類推されるように、治療が複数時点で行われるとしても2, 3の状況に該当する場合には、因果推論を行う上での扱いは治療が単時点で行われる場合と変わらず、ベースライン共変量の調整に基づく手法が適用可能です。これはすべての個人に関して初回治療によって2回目以降の治療が決定されるため、後述する時間依存性交絡(time-dependent confounding)という問題が生じ得ないためです。   次に、時間依存性治療(time-varying treatments)とは時間固定でない治療すべてを指します。すなわち、複数時点で行われる治療であり、かつ各時点でとる値が初回の治療によって決定論的に定まらない治療が時間依存性治療にあたります。例えば、月に1回のペースで運動指導プログラムをある市において行うというプロジェクトを考えてみます。ここで、「初回指導に参加した場合は何があっても絶対に毎回参加しなければならない」や「初回指導に参加しなかった場合には絶対に以降参加できない」などといった特殊な制約がない限りは、各指導日でプログラムという2つの選択肢を市民は取ることができます。そのため、この運動指導というのは時間依存性治療にあたります。 この他にも疫学研究における喫煙や投薬量が被験者の状態によって変更される処方、検索履歴に応じて表示される広告(レコメンド)など様々な曝露、治療、介入が時間依存の例として挙げられます。ただし、特に疫学・医学分野においては本質的には時間依存であるものの、測定の実現可能性から時間固定とされる場合もあります。また、対照的に研究・プロジェクトの計画時点では時間固定であるものの、研究実施後には時間依存であるとみなされる場合もあります。それが割付の不遵守(コンプライアンス違反)が存在する場合の治療です。例えば、上記の時間固定である治療の2番目のシナリオで紹介した継続的に被験薬と対照薬(実薬)を投与するという臨床試験においては、試験に参加する被験者が何らかの理由(e.g., 副作用の発現)で治療法を切り替える場合があります。このような状況においては、本来は時間固定であった治療を時間依存性治療とみなして解析(補正)を行うことが可能です。 ※2 執筆時点で対応する定訳が存在しないという筆者の認識であるが、本コラムにおいては時間固定性治療という訳をあてる     治療レジメン(treatment regime) ここまでは因果推論を行う上での治療分類について紹介を行いましたが、以降では治療レジメンとその分類について紹介と解説を行います。これらは、因果効果の定義やデータを用いて効果を推定する(識別のために必要な仮定を検討する)場合に非常に重要になります。ここから先は数学的な内容も入りますので、以下のように記法をおきます。基本的にはアルファベットの大文字は確率変数を、小文字はその実現値を指しています。 k:時点を表す添字(k = 0, 1, ..., K) Ak:時点kにおける二値である時間依存性治療(1: あり, 0: なし) A0:k

Analytics
0
本当の原因とはなにか:操作変数法(Instrumental variable methods)②

はじめに 因果推論コラム・シリーズでは潜在アウトカムモデルに基づく因果推論の解説を行なっています。今回のテーマは操作変数法(instrmental variable methods)です。 ある介入AがアウトカムYに及ぼす平均因果効果を推定する手法の1つに操作変数法があります。この手法は、操作変数と呼ばれる変数を利用することで交絡因子を調整することなく平均因果効果を推定する手法です。分野や状況によって交絡因子の特定や測定は困難であることは多く、それらの調整を行う必要がないという点で操作変数法は魅力的な手法です。ただ一方で、共変量調整に基づく因果効果の推定手法では必要とされない仮定が要求されますので、その点ご注意ください。ある変数が操作変数であるための条件は以下の3つです。各条件の詳細や実際にどのような変数が操作変数として提案されているか、操作変数と介入変数の相関が弱い場合に発生する問題については前回のコラムをご参照ください。 ZはAと関連する ZはYに対してAを介した以外の効果を持たない ZとYは共通原因を持たない 一般的な誤解として、操作変数法では操作変数が存在さえしていれば平均因果効果の推定が可能であるという認識があります。厳密には、操作変数が存在している場合に操作変数法によって推定可能なのはboundsと呼ばれる平均因果効果が含まれる幅であり、平均因果効果を推定するためには後述する仮定のいずれかが成立している必要があります。また、操作変数に関する3条件に加えて第4の条件としてどちらの仮定を置くかによっても、どのような集団における平均因果効果が推定可能であるかが異なります。本コラムではboundsと呼ばれる因果効果の部分識別について紹介した後、平均因果効果の識別に必要となるhomogeneity、およびmonotonicityについて紹介をします。なお、boundsは信頼区間とは異なる概念であることにご注意ください。   Bounds:因果効果の部分識別 このセクションでは本コラムシリーズの参考書籍である『Causal Inference: What If』の具体例を一部改変し、boundsについて簡単に紹介していきます。 「集団全員にある介入を行なった場合、行わなかった場合と比較して加法的なスケールで平均的にどの程度効果があるか」を示す平均因果効果E[Ya=1]-E[Ya=0]は、二値アウトカムに関してはPr[Ya=1=1]-Pr[Ya=0=1]と表すことが可能です。ここで、このPr[Ya=1=1]-Pr[Ya=0=1]のとりうる値の下限と上限を考えてみると、集団の潜在アウトカムに関して無情報である場合(データが何も存在しない場合)には、当然のことですが、下限は-1、上限は1です。 Pr[Ya=1=1]-Pr[Ya=0=1]=-1(下限) Pr[Ya=1=1]=0:介入を受ける場合の潜在アウトカムはすべての被験者に関して0 Pr[Ya=0=1]=1:介入を受けない場合の潜在アウトカムはすべての被験者に関して1 Pr[Ya=1=1]-Pr[Ya=0=1]=1(上限) Pr[Ya=1=1]=1:介入を受ける場合の潜在アウトカムはすべての被験者に関して1 Pr[Ya=0=1]=0:介入を受けない場合の潜在アウトカムはすべての被験者に関して1 すなわち、二値アウトカムに対する無条件での平均因果効果が含まれる幅(bounds)は[−1,1]です。例えば、集団が20名で構成されているとすると、下限と上限になる潜在アウトカムの状況は下図の通りです。 ここで集団(の一部)に関して実際にデータが得られた時、一致性の下でboundsはより狭く考えることが出来ます。これは、データとして一部の被験者らの潜在アウトカムYa=1, Ya=0の情報が得られるため、未知の部分に対して最も極端な場合の値を代入することによって下図のように下限と上限を計算することが出来ます。 なお、アウトカムが二値変数ではなく連続変数である場合にboundsを計算するためには、アウトカムが取り得る最小値と最大値を指定し、二値変数の場合と同様に代入する必要があります。また余談ですが、boundは前回のコラムで紹介した集団レベルでの除外制約 (condition (ii)) とmarginal exchangeability (condition (iii)) が成立する操作変数Zが存在する場合にはboundsをより狭く考えることが可能です。この場合のboundsはnatural boundsと呼ばれ、その幅はPr[A=1|Z=0]+Pr[A=0|Z=1] となり、データのみから識別されるものよりも狭くなります(Robins 1989, Manski 1990)。加えて、marginal exchangeabilityではなくjoint exchangeabilityが成立する場合には、さらに狭い幅となるsharp boundsを識別することが可能です。さらに追加の仮定を置くことでより狭いboundsが計算することができることも示されています(Richardson, Evans and Robins 2011)。しかし、上記のようなboundsは、一般には因果効果として用いる指標のnull value(e.g., E[Ya=1-Ya=0] であれば0)を含むかなり広い幅となり、有用でないことの方が一般的です。   第4の仮定:homogeneity(同質性)

Analytics | Students & Educators
0
SASによる因果推論:PSMATCHプロシジャによる傾向スコアマッチング

はじめに 因果効果の推定手法の1つである傾向スコアマッチング、およびSASでの実装方法について紹介します。傾向スコアマッチングのSASでの実装にあたっては、本記事ではSAS/STAT 14.2(SAS 9.4)で追加されましたPSMATCHプロシジャを使用します。因果推論の基本的な枠組みや傾向スコア・傾向スコアマッチングの統計的理論については、詳しく解説を行いませんので、そちらに関心がある方は書籍等を参考にしていただければ幸いです。 理想的なランダム化比較試験においては、ランダム化により治療群と対照群間で測定・未測定の交絡因子(confounders)の分布が期待的に等しくなるため、単純な群間比較によって治療(介入、曝露)の興味のあるアウトカムに対する効果を評価することが可能です。しかし、ランダム化が行われなかった実験研究や観察研究のデータから因果関係を見出そうとする場合には、一般に交絡(confounding)と呼ばれるという問題が生じます。これは簡単に述べると、治療群と対照群で集団の特性が異なることで2つの集団が比較可能ではない状況、治療群と対照群でのアウトカムの違いが治療だけではなく集団の特性の違いにも依存する状況を意味しています。つまり、ランダム化が行われなかった実験研究や観察研究のデータから因果効果を推定する際には、交絡を十分に制御した上で群間比較を行う必要があり、世間一般で因果効果の推定手法と呼ばれるものは、交絡を調整方法する方法だと認識していただいてよいかと思います。因果効果の推定手法は回帰や層別化、標準化など様々なものがありますが、本記事ではマッチング法に注目します。マッチング法は、治療群と対照群から類似した特徴を持つ被験者をペアとし(マッチングさせ)、マッチした対象集団において治療を受けた群と受けなかった群を比較するという方法です。  ただ、一言にマッチング法と言っても複数の交絡因子(共変量)の情報をそのまま用いる「共変量マッチング」と、共変量の情報を傾向スコアという一次元の情報に落とし込んだ上でマッチングを行う「傾向スコアマッチング」という2つの方法に大きく分かれます。初学者にとっては前者の方がより直感的な方法かと思いますが、共変量が高次元である場合や変数のカテゴリ数が多い場合にはその実施が困難になります。そのような場合にしばしば用いられるのが後者の傾向スコアマッチングです。マッチングには、治療群と対照群の構成比率やマッチング方法など様々なオプションがありますが、傾向スコアの分布が同じ(治療群と対照群が交換可能)であるmatched populationを作成するというのが共通の考え方です。また、傾向スコアマッチングの実施手順は連続である単一の共変量を用いた共変量マッチングと同様であり、大きくは以下のような手順となります。 【傾向スコアマッチング法のステップ】 共変量の特定、測定 傾向スコアのモデル指定、傾向スコアの推定 マッチングアルゴリズムの決定、マッチングの実施 マッチングした対象者で構成された集団(matched population)における治療群と対照群での交絡因子の分布評価 4.で評価した共変量が不均衡である場合には2.に戻る 群間比較の実施 推定結果の解釈   記法と仮定 記法 以下の記法の下で傾向スコアマッチングに関する議論を行います。アルファベットの大文字は確率変数を、小文字はその実数値を意味するものとします。なお、以降でボ-ルド体としている場合は単一の変数ではなくベクトルであることを意味しているものとします。 A:二値の治療変数 Y:観察されるアウトカム Ya:潜在アウトカム X:共変量(一般にはベクトル) 仮定 本記事では以下の識別可能条件を仮定します。理想的なランダム化比較試験においては研究デザインによってその成立が認められますが、観察研究ではあくまで”仮定”となります。つまり、その成立を認めることが妥当であるかどうかの議論が別途必要となることにご注意ください。また、各条件の詳細や意図する内容については本記事では取り扱いませんので、他の記事や書籍等をご参照ください。 【識別可能条件 (Identifiability assumptions) 】 一致性 (consistency) If Ai = a, then YiA = Yia = Yi  特にAが二値であるとき、   Yi = AYia=1 + (1-A) Yia=0   条件付き交換可能性 (conditional

Analytics
0
本当の原因とは何か:操作変数法(Instrumental variable mrthods)①

はじめに 統計的因果推論における1つの達成目標として「介入を行った場合には行わなかった場合と比較してどの程度結果(アウトカム)が変わったのか」という因果的な疑問に対し、定量的に答えることが挙げられるかと思います。以前のコラムでは、こういった因果効果を数学的・統計学的に議論していくために潜在アウトカムという考え方を導入し、その値を推定していくために重要ないくつかの仮定について紹介を行いました。この因果効果の推定の手法には様々なものがありますが、次回以降のコラムで紹介をする交絡調整に基づく因果効果の推定手法 (e.g., 回帰、層別化、傾向スコアを用いた手法)では、興味のある因果効果の推定値をバイアスなく得るためには、交絡や選択バイアスの調整に必要な全ての変数が完全に特定・測定されているという仮定が成立している必要があります。この仮定はデータからその成立を検証することはできず、もしもいずれかが成立しない場合には得られる推定値にはバイアスが含まれ、いわゆる残差交絡 (redidual confounding) が存在する状況となります。現実的に仮定が全て厳密に成立するケースというのは比較的稀ですので、そのような意味では大部分の研究結果(特に観察研究)・解析結果には一定のバイアスが含まれているとみることもできるかと思います。ただし交絡調整に基づく手法がダメだと言っているわけではなく、調整が不完全ながらもバイアスを軽減することは十分に意義があり、また最終的に結果に含まれるであろうバイアスの大きさとその方向(過大評価 or 過小評価)を議論することが重要かと思います。 今回のコラムでは、操作変数法(instrumental variable methods, IV methods)という因果効果の推定手法について紹介と解説を行っていきます。この推定手法は、操作変数 (instrumental variable, instrument) と呼ばれるいくつかの条件を満たす特殊な変数を利用することで因果効果の推定を行う手法になります。医学分野では、先行研究の結果(e.g., 医学的な知見)から交絡因子となりうる変数の特定・測定が比較的容易であることから先ほど言及した交絡調整に基づく推定手法が用いられるケースが比較的多いですが、経済学や社会科学といった分野ではそもそもの特定が出来なかったり、仮に交絡因子であろうと見込んだ場合であってもそれを測定することができないケースが非常に多く存在します。そのため交絡調整に基づかない手法である操作変数法というのは経済学や社会科学において、特にその理論が発展してきたという歴史的な背景があります。なお詳細については後述しますが、操作変数法は交絡因子の測定を必要としないというメリットもある一方、いくつかの検証不可能な仮定に基づく手法です。したがって、解析を行う研究・データにおいて因果効果の推定のために要求される仮定の成立を認めることがどの程度妥当であるかの議論が他の手法と同様に必要であることにご注意ください。   操作変数の3条件 操作変数法では、ある介入AのアウトカムYに対する因果効果を推定するために以下の3つの条件を満たす変数Zを利用します。この変数Zは操作変数 (instrumental variable, instrument) と呼ばれます。 操作変数の3条件 (Theree instrumental conditions)  Z is associated with A ZはAと関連する Z does not affect Y except through its potential effect on Y ZはYに対してAを介した以外の効果を持たない Z

Learn SAS | Students & Educators
0
SAS® OnDemand for Academicsがリニューアルしました

2023年を迎えて間も無く1ヶ月が経とうとしていますが、皆様はどのよう新年のスタートをされましたでしょうか。With コロナに向けた取り組みが社会的には広がり、自らが管理する時間が増えた中で、質の良い学習時間を確保することは社会人・学生問わず大変重要なことかと思います。 さて、SASでは学習および教育を目的とする方向けに、SAS® OnDemand for Academics (ODA) というアナリティクス・ソフトウェアを無料で提供しています。実は、このSAS ODAですが昨年末にログイン画面のアップグレードが行われ、提供されている各種機能へのアクセス方法がわかりやすくなりました。このブログ記事では、アップグレード後の SAS ODAについて紹介していきます。 ①ホーム画面(中央) 画面中央には大きく3つのセクションがあり、それぞれ下記の内容が提供されています。 Code with SAS® Studio すべての教員・学生・個人学習者を対象として、Webサイトにアクセスするだけで使用可能です 提供されている”タスク”からGUI的にSASコードを生成可能です(もちろん自分でコーディングすることも可能) SAS Studio上にプログラムファイルの新規作成、既存ファイルのアップロードが可能です(最大5GB) アクセス可能なSASソフトウェア一覧: SAS/STAT® Base SAS® SAS/IML® SAS/OR® SAS/QC® SAS/ETS® Learn SAS Programming Programming 1, Statistics 1といった統計学やプログラミングに関するいくつかのe-learningや、動画教材を提供しています SASソフトウェアや統計解析・機械学習を中心とした基礎的な知識、スキルをe-learningを通じて習得可能なオンライン学習プラットフォームSAS Skill Builder for Studentsを学生を対象として提供しています(大学ドメインのアドレスが必要) SASの認定資格に関するガイドをていきょうしています Collaborate with SAS Communities いくつかのSASに関連するコミュニティ情報が掲載されています プログラミングや解析にあたっての疑問点、Tipsを共有し、世界中のSASユーザーからコメントをもらうことが可能です ②ホーム画面(右) 初期状態では次の5つのアイコンが表示されます。 Files

Analytics | Students & Educators
0
本当の原因は何か?:因果効果を求めるために必要な条件

はじめに   前回のコラムでは因果関係を統計学的に考えるために「潜在アウトカム」という概念を導入しました。そして、因果効果を異なる介入レベルの潜在アウトカムの比較によって定義しました。例えば、心臓移植という介入がその後の生存に関して因果効果を持つかどうかを考えたい場合には、各個人が心臓移植を受けたらどうなったか、もしくは受けなかったらどうなっていたかという2つのifの結果(潜在アウトカム)を考え、それぞれを比較します。これが潜在アウトカムの枠組みでの因果推論(Rubin流の因果推論)の基本的な考え方になります。   しかし、詳細については後述しますが、このifの結果である潜在アウトカムは、現実にはいずれか1つしか観測はされず、もう一方は現実には得られない結果(反事実)となるため、個人における因果効果は定義することは可能であっても、その値を求めることは一般には出来ません。しかし、平均因果効果については識別可能条件 (identifiability conditions) と呼ばれる以下の3つの仮定の下では、その値をデータから推定することが可能です。    一致性 (consistency)    交換可能性 (exchangeability)  正値性 (positivity)    今回のコラムではこれらが意図する内容について解説を行います。なお推定手法によっては追加の仮定や、ここで紹介したものとは異なる仮定が置かれる場合(e.g., 操作変数法)、暗に置かれている条件については補足資料や、各推定手法に関するコラムをご参照ください。    一致性   前述のように潜在アウトカムを用いるRubin流の因果推論においては、因果効果は異なる介入レベルの潜在アウトカムの比較によって定義されます。ここで1つ重要なことがあります。それは、潜在アウトカムと観測されるアウトカムは異なる概念であるということです。あくまで潜在アウトカムとは、〇〇という介入を「仮に受けたとしたらどのような結果となるかというifの結果」であり、観測されるアウトカムは〇〇という介入を「実際に受けた場合の結果」です。つまり、潜在アウトカムを用いて定義される因果効果をデータ(観測される結果)から考えるためには、これら2つの異なるアウトカムをリンクさせる必要があります。   そこで必要となるのが一致性 (consistency) と呼ばれる仮定です。一致性とは全ての個人に関して、ある介入A=aを受ける場合の潜在アウトカム Ya が、実際にその介入を受けた場合に観測されるアウトカムYと一致することを意味します。例えば、介入Aを心臓移植の有無、アウトカムを介入から5日後の生存の有無としたとき、ある個人に対して想定される潜在アウトカムは、介入を受けない場合と受ける場合の結果であるYia=0, Yia=1の2つです。ここで仮に、被験者は実際に介入を受けたとします。すると、手術から5日後に観察された結果Yは、手術の前に考えた潜在アウトカム Yia=1と同じであるというのが一致性が指す内容です。一見すると、大変当たり前のことを言っているように思われます。しかし、一致性は以下の2つの要素から構成され※1、これらが成立しない場合には、潜在アウトカムと観測されるアウトカムが一致しない、もしくは後述の式の様な単純な関係とはならない場面があります。 precise definition of the counterfactual outcomes  linkage of the counterfactual outcomes to the observed outcomes     1つ目の要素は、潜在アウトカムを構成する要素が十分に定義されているかどうかに関する項目です。ここまで心臓移植という介入の因果効果を考えるにあたり、介入を受ける場合の潜在アウトカム Ya=1と受けない場合の潜在アウトカムYa=0を比較しました。しかし、心臓移植を受けるといっても心臓移植を行う医師によって治療の効果は変わりうる可能性は十分考えられます(医師の手術の上手さが異なる)。このように単に介入を受けるといっても複数のバージョンがあり (multiple versions of treatment) 、かつ、それぞれの場合で介入による効果が異なる場合には、治療を受ける場合の潜在アウトカムを単にYia=1とするのではなく、どのような治療を受けるのかといった情報まで含めて、潜在アウトカムの定義をする必要があります。precise definition of the

Analytics | Students & Educators
0
本当の原因は何か?:潜在アウトカムによる因果効果の定義

はじめに   データに基づいた意思決定が必要とされる場面が近年ますます増えており、そういった際には、データからいかに因果関係を導き出すかが非常に重要な問題です。”因果”を統計学的に捉え、いかにしてそれに迫るかは、統計的因果推論として体系化がなされています。SAS Blogでは、前回の記事からこの統計的因果推論に関する連載コラム・シリーズが始まりました。  因果関係を統計学的に導くことを目的とする統計的因果推論には、主に2つの枠組みがあります。1つは潜在アウトカムを用いるRubin流の考え方、そしてもう1つが構造的因果モデルを用いるPearl流の考え方です。これら2つの考え方は相反するものではなく、Pearl流の因果推論では、ある変数の特徴とそれらの関係を記述するために構造的因果モデル  (SCM; Structural Causal Model) が用いられています。このSCMには対応するグラフィカル因果モデルがそれぞれ存在しており、その際に使用されるのが有向非巡回グラフ (DAG; Directed Acyclic Graph)※1です。このDAGはRubin流の因果推論においても、変数間の関係を視覚的に理解するために補助的に利用がされています。本コラム・シリーズでは前者の潜在アウトカムの枠組みでの因果推論について紹介を行います。今回は特にその根底となる潜在アウトカムについて、また、それを用いた因果関係の定義について説明します。  ※1 補足資料を参照    相関関係と因果関係   相関関係とは、ある2つの変数において、一方が増加するにつれてもう一方も増加(減少)する傾向があるという双方向の関係を意味しています。これに対し因果関係とは、ある2つの変数のうち、一方の操作可能な変数(原因)の値を変化させる(介入を行う)と、もう一方(結果)の値が変化するという、原因から結果への一方向的な関係です。これらの関係の違いを理解することは社会生活を送る上で非常に重要です。例えば、相関関係がある有名な例として、年収と血圧の関係があります。この2つの変数の間には正の相関関係(年収が高くなるほど血圧が高い傾向)があります。しかし、年収を上げるために血圧を上げる(Ex, 暴飲暴食を行う)ことは妥当でしょうか。もしくは、血圧を下げるために年収を下げる(Ex, 転職をする)ことは受け入れられることでしょうか。おそらく多くの読者の方の意見は「No」であるかと思います。この例からも察することができるように、相関関係と因果関係の存在とその方向というものは必ずしも一致しません。また、これらの関係を混同することは大きな不利益につながる可能性があります。上記の例であれば、真には血圧の増加は年収増加に対して因果的な効果を持たないのにも関わらず年収を上げるために無駄に暴飲暴食を行ってしまうことで、結果として不健康につながる可能性があります。   このように興味の対象が因果関係、因果効果である場面は比較的多く存在します。統計的因果推論 (causal inference) とはこれらを形而的、哲学的にではなく、統計学的に考える学問分野です。また、単に因果推論と言われる場合もあり、コラム中で単に因果推論と呼称した場合には、統計的因果推論を意味していることにご注意ください。データから因果効果を推定するために「傾向スコア」を用いた手法など様々なものが用いられています。しかし、これらの手法は適用さえすれば因果効果を適切に推定することができるというわけではありません。因果推論を行うにあたっては因果関係を検討する集団はどういった集団であるか、考える因果効果はどのような介入の効果であるかといった因果的な疑問 (causal question) を明確にすることがまず重要です。その上でデータへの手法の適用があります。また、それぞれの手法は異なる仮定を必要とするため、無条件で因果効果を求めることはできず、その仮定が目の前にあるデータに対してどの程度成立するものであるかといった議論も必要です。 加えて、推定する対象が手法間で異なるといった点や真の関係をゆがませる要因は何が想定されるのかなど、他にも様々な事を考慮する必要があり、慎重に議論を行っていくことが大切です。本コラムでは潜在アウトカムの枠組みでの因果推論の理論(考え方)と、一部の因果効果の推定手法についてのみ取り扱いますが、現実的にはそのような総合的な議論が重要です。    本コラムにおける用語   今回のコラムでは、心臓移植とその5日後の生存の間の因果関係を具体例として考えます。すなわち、心臓移植という介入が5日間の生存というアウトカムに対して、因果効果を持つかどうかを検討します。医療の分野では原因として考える要因を介入 (intervention) や処置 (treatment) 、曝露 (exposure)、結果変数のことをアウトカム (outcome) と呼ぶことが一般的であり、このコラム・シリーズでは、具体例として主に医療関連の話題を取り上げるため、基本的にはこのような呼称を行います。経済・金融系の分野では、因果効果があるかどうか検討したい要因が施策等である場面があるかと思いますが、因果推論の理論に関して変わりはないので、本コラムの例を読者の方がそれぞれ抱えている疑問に置き換えて考えるとよいでしょう。ただ、今後紹介する因果推論に関する様々な仮定の妥当性や分析に用いられるデータの特徴は、それぞれの分野によって異なりますので、その点ご理解ください。    潜在アウトカムによる因果効果   それでは早速、例を用いて潜在アウトカムとは何か、因果関係とは何かを考えていきます。具体的には心臓移植(介入)が5日後の生存(アウトカム)に対して因果的な効果があるのかどうかを考えます。この関係を検討するために、まずゼウスとヘラというある2人に対し、ともに介入を行うことを想定し、何らかの方法で以下の結果が得られたものとします。  ゼウスは1月1日に心臓移植を受けると、その5日後には死亡している。 ヘラは1月1日に心臓移植を受けると、その5日後は生存している。   このもしもの結果(介入を行う場合の結果)が分かったとき、心臓移植はゼウスとヘラの5日間の生存に対してそれぞれ因果効果を持つと結論付けることは可能でしょうか。一見すると、ゼウスは心臓移植後に死亡し、ヘラは生存していますので、ゼウスに対してはnegativeな因果効果(心臓移植により死亡した)、ヘラに対してはpositiveな因果効果(心臓移植により生存した)があったように見えます。しかし、その結論は正しいのでしょうか。もしかすると心臓移植を受けずとも、ゼウスは5日後には亡くなり、ヘラは生きていたのかもしれません(結果は変わらなかった)。もしくは心臓移植を行わなければ、逆にゼウスは生存し、ヘラは亡くなっていたのかもしれません。つまり因果効果があるかどうかについては、この結果だけでは判断することはできません。   では、どのような状況であれば因果関係かどうかを判断することができるでしょうか。その1つのアイディアがもし介入を受けなかったらどのような結果が得られたのかを考えることです。実際にはゼウスもヘラも介入を受けるか受けないかのいずれかしか取り得ないため、必ずどちらか一方の結果は現実的には得られない(反事実)ものとなってしまいますが※2、先ほどと同様に何かしらの方法でその場合の結果を知ることができたと仮定し、それぞれの場合の結果を比較するわけです。そして、それらの値が異なるのであれば介入の因果効果があるとし、同一であるのならば因果効果がないと判断します。   ゼウスとヘラに関しては、以下のようなifの結果が得られたとします。  ゼウスは1月1日に心臓移植を受けないと、その5日後は生存している。 ヘラは1月1日に心臓移植を受けないと、その5日後は生存している。   先程の結果も含め、介入を受ける場合と受けない場合の結果をまとめたものが下図です。   介入を受けない場合の結果が得られたことにより、心臓移植はゼウスに対しては5日後の生存に対し因果効果を与えた(ネガティブな効果)、ヘラには因果効果を与えなかった(介入があってもなくても結果は同じ)と判断することができます。おそらく、この判断に関しては読者の方々も特に異論はないかと思います。この例のように、ある介入を受けた場合のifの結果のことを潜在アウトカム (potential outcomes)

Analytics | Students & Educators
0
本当の原因は何か?:コラム概要

はじめに   根拠に基づいた意思決定を行うこと (EBPM; Evidence Based Policy Making) が、近年分野を問わず重要視されるようになってきています。意思決定を行う立場としては、根拠となる事象と結果の事象の間に因果関係があるのか、それとも相関関係しかないのかは大変大きな違いです。   因果関係と相関関係を混同した1つの有名な例として、チョコレート摂取量とノーベル賞の受賞者数に関する研究があります。この研究では、「チョコレートを多く摂取するとノーベル賞受賞者数が増加する」という因果関係の存在について触れられています。この論文は、2012年に世界で最も権威のある医学雑誌の1つである New England Journal of Medicine に掲載され、世界規模で大きな論争を引き起こしました。論文では、国ごとのチョコレート消費量とノーベル賞受賞者数を調べたところ、チョコレート消費量の多い国ほどノーベル賞受賞者数が多いというデータが示されました。論争のポイントとなったのは、各国のチョコレート消費量とノーベル賞受賞者数の関係が以下のどちらの関係であるかについてです。  チョコレートを摂取すればノーベル賞受賞者は増加する(因果関係)  別の隠れた要因がそれぞれに影響を与えており、チョコレート消費量とノーベル賞受賞者数の間に見かけ上の関連性が生まれている(相関関係)   一体どちらの主張が正しいのでしょうか。読者の方には、ぜひ今の意見と、このコラム連載が終了した後の意見を比較していただきたいと考えています。   統計的因果推論 (Causal causal inference)  とは、因果関係をデータから導くための体系的な学問領域であり、2021年に David Card, Joshua Angrist, Guido Imbensの3名がノーベル経済学賞を受賞したことも相まって、現在大きな注目を集めています。しかし、その注目の程度と比べると、内容についてはあまり認知されていないように思います。そこで本ブログ・シリーズでは、統計的因果推論(または、単に因果推論)に関する連載を行います。データアナリティクスに関わる多くの方に、因果とは何か、それをデータから導くためには何が必要となるのかを理解をしていただき、適切なデータアナリティクスのために活用されることを望みます。連載コラムで取り扱う内容は以下を予定しています。  理論編 潜在アウトカムの枠組み 因果効果を求めるために必要な条件 観察研究と実験研究における交換可能性 選択バイアス (selection bias) 測定誤差 (measurement error) 手法・実装編 推定におけるモデルの必要性 層別化・回帰・標準化 傾向スコアとそれを用いた手法 操作変数法  理論編では、データから因果関係を考えるために必要となる概念、および仮定について取り扱います。また、観測される関係が真の関係と異なる要因について解説を行います。手法・実装編では、理論編で扱う潜在アウトカムの枠組みで因果効果を推定する手法についてSASでの実装方法とともに紹介を行います。SASソフトウェアでは、2016年以降のバージョンで、因果推論に特化した機能が利用できます。   なお、手法・実装編で紹介する因果効果の推定手法は、すべてを網羅しているわけではなく、回帰不連続デザインなど他にもいくつかの手法があることにご注意ください。 本コラムでは出来る限り数学的な記載は避け、直感的な表現をすることに努めますが、数理的な部分に興味がある方に向けた参考資料も準備しています。コラム中に登場する解析例で使用したプログラム・コードは著者のGithub上で公開を行う予定です。    謝辞  この連載記事では、参考文献として主に以下の2つを使用します。 Causal

Analytics | Students & Educators
0
データアナリティクスにおける統計学の必要性

現代において統計学は様々な分野で利用されており、データアナリティクスとは切っても切れない関係にあります。しかし、実際にデータアナリティクを行う人すべてが、その内容を適切に理解しているのでしょうか。「有意差がつくかどうかとりあえず検定を行ってみる」、「集めたデータ全てをモデルに組み込んでみる」このような経験を持つ方も実は多いのではないでしょうか。分析に用いる手法の仮定や限界、その他解釈や留意事項への理解がないまま行われるデータアナリティクスは、誤った解釈を生む可能性があります。しかし、実社会においては、統計学はその活用事例が注目されがちであり、適切ではない事例が身の回りにあるというのもまた事実です。データアナリティクスを行う側としても、その結果を受け取る側としても、統計学を一般教養として学んでみてはどうでしょうか。 今回紹介するのは、e-learningコース「Statistics 1: Introduction to ANOVA, Regression, and Logistic Regression」です。統計学を学ぶ時に、学習がうまく進まない一つの理由として、各種内容が実際にどう活用されるか、そのイメージがつかないという声を多く耳にします。本コースは純粋な統計学の知識だけでなく、そのような具体的なデータアナリティクスに至るまでの「何を目的とするのか」、「目的によってどのような手法が適切であるのか」といった「データリテラシー」に関する内容も潤沢に用意されているため、一環した流れの中で学習を行う事ができます。このような何のために統計学を学ぶ必要があるのかという点は、どうしても”学問としての”統計学の学習の際には意識がされないため、統計学を初めて学ぶ方だけではなく、簡単にその内容を触れたことがある中級者の方にも最適な学習教材です。 統計学は「記述統計学」と「推測統計学」に分類されます。前者はデータの持つ特徴(最大値、平均など)を記述し、整理することによって、そのデータ自体への理解を行おうというものです。それに対し後者は、データをとある大きな集団からのサンプルであると仮定し、データからその大きな集団(母集団)の持つ特徴について、推測を行うものです。ここでは、実際に推測統計学でよく用いられている「統計的仮説検定」と「統計モデル」という、2つの手法について紹介します。これらについてもコース中ではより詳細に、活用されている事例とともに紹介されているので、ご興味のある方はぜひ一度コースに登録・受講してみてください。登録手順はこちらの以前の記事を参照ください。   統計的仮説検定 ある大きな集団(母集団)に対しその特徴を知りたい場合、すべてのデータを得ることができるのは非常に稀です。例えば、日本国民全員があるテレビ番組Aを見ているかどうかの情報を得ることは、労力的にも、費用的にもほぼ不可能です。統計的仮説検定はそういった場合に、標本である一部のデータを用いて、母集団に対する特定の仮説が成立するか否かを、背理法的に判断する方法です。先のテレビ番組の視聴率調査は、実際にこの考えに基づくものであり、よく見かける視聴率はおおよそ1万世帯のデータをもとに、統計的に推定されています。検定の手順は以下の通りです。 母集団に対し、帰無仮説とそれに対応する対立仮説の計2種類の仮説を設定する 帰無仮説の下で、得られたデータ(とそれ以上に極端な結果)が得られる確率(P値)を計算する 事前に設定した基準(有意水準)とその確率を比較する 基準よりも確率が低いのであれば、そもそも帰無仮説が妥当ではないと判断する(帰無仮説を棄却) 統計学でよく誤解を生みやすい「P値」というものが利用される内容になります。仮説検定は非常によく用いられる方法ですので、自分でどういった手順で検定は行われているのか、その解釈はどう行えばいいのか、を説明できない方は受講してみることをお勧めします。   統計モデル データから母集団の特徴について推定を行う場合には「統計モデル」というものが用いられます。このモデルはなぜ必要なのでしょうか?ここで、日本人の男性と女性の身長について、それぞれ推測をするという例を考えます。また、現実に得られるデータは、男性のみデータだけだとします。すると一つ問題が生じます。それは「女性については推定を行うことができない」ということです。男性については、得られたデータが男性50名の身長データですので、妥当な推定が可能です(ここにも男性の身長分布は正規分布であるという仮定は置きます)。しかし、女性の身長について推定を行おうとしても手元には男性のみのデータしかないため、推定ができません。もし何の仮定もなければ、男性の身長データを女性の身長の推定のために用いることは妥当ではありません。ではここに、『女性の身長の分布は男性の分布より10cm低く、分布の形状は同じである』という仮定があるとどうでしょうか?(いくつかの調査によると期待値としては12~13cmほど低いそうですが) 上記の仮定があるのであれば、男性の身長分布から女性の身長分布が想定可能なので、男性のみのデータからデータには含まれていない女性についても推定を行うことが可能になります。つまり、「統計モデル」とは観測されたデータにはない未知の部分について推測を行うために、仮定する一種の数学的・統計学的な制約条件になります。ただ一概にモデルといっても様々なものがあるため、データの置かれている状況によって想定される適切なモデルは異なり、どれを選択すべきかはケースバイケースです。このモデルの選択をどうすべきかは先行研究やこれまでの知見による部分が大きいため、様々な場面でのデータアナリティクスを学ぶ必要があります。   学生の方であれば今後、卒業研究やコンペティション参加など、多くの場面で統計学の知識が必要になるかと思います。数日学習を行えば統計学への理解が深まるだけでなく、SASから学習認定デジタルバッジを無料でもらうこともできます。ぜひこの機会に一度統計学について、学習を行ってみてはいかがでしょうか?

Analytics | Learn SAS | Students & Educators
0
SASのオンライン学習コース「Skill Builder for Students」の紹介(4)Statistical Analysis, Predictive Modeling, and Machine Learning編

以前の記事では、学生であれば無料で利用可能なオンライン学習コース「Skill Builder for Students」についての紹介を行いました。このSkill Builder for Studentsには5つのコースが準備されており、今回の記事ではStatistical Analysis, Predictive Modeling, and Machine Learningコースについての概要を紹介します。このコースでは統計的仮説検定から回帰分析、予測モデル、教師あり機械学習まで「統計・機械学習モデル」の基礎的な部分と、SASソフトウェアでの実践を学習することができます。 データ析を行う際には、しばしば統計モデルや数理モデルと呼ばれる「モデル」を利用します。このモデルの学術的理論や実装方法を学習する機会は多数ありますが、モデルを利用する目的をはっきり意識できているでしょうか。モデルは現象を数式等で模式的に表現したものですが、このようなモデルによる表現の目的が、その現象に対する説明を行いたいのか、未知のイベントの予測を行いたいのかを区別する必要があります。前者は記述的アナリティクス(および診断的アナリティクス)、後者は予測的アナリティクスと呼ばれます。 記述的・診断的アナリティクスでは、現象を観察して得られたデータから、その現象に関する情報の関連や因果関係を推測し、現象を説明することが目的です。例えば、住宅価格を考えるとき、価格を決定する要素(面積、駅からの距離、築年数、階数、近隣施設など)は何か、どの要素が最も価格と強い関係を持っているかといったことを理解するために統計モデルを活用します。 一方、予測的アナリティクスでは、面積や駅からの距離といった既知の情報から住宅の価格を推定・予測するためにモデルを活用します。記述的・診断的アナリティクスのような「現象の理解」よりも、「予測の精度」に注目することになります。 今回のコースは、このような「何のためにデータアナリティクスを行うのか」という点が特に意識されており、SASでの実装を紹介するだけではなく、統計学の概要、モデルを使って何を考えるのかについてのイメージや理論の説明が豊富に用意されています。近年、アナリティクスに関係する職種を目指す方が増加しており、統計検定に代表されるような資格を取得しようとしている方も多いと思います。それに伴い、関連した書籍・講座が世に出るようになってきていますが、手法のみに着目しているものも多く、「なぜ」、「どんな場面で」その手法を利用するのかをイメージできないものも見られます。今回この記事で紹介しているコースは、そのような今後データに関連する分野に関わっていきたいという初学者の方に特におすすめです。単に統計的手法の実施方法や結果の見方を紹介しているだけではなく、どういったモチベーションでその手法の利用を考えるのか、現実に起こり得るシナリオに沿って理解できる教材だと思います。    Statistical Analysis, Predictive Modeling, and Machine Learningコースへのアクセスは以下の手順です。 Skill Builder for Studentsへログイン 「Learn SAS」というタブをクリック 画面中央の「Start Learning」をクリック 「Statistical Analysis, Predictive Modeling, and Machine Learning」をクリック 展開される各種e-learningコースをクリック 画面下部にある「enroll」をクリック このコースは後述のように、6つの項目に分かれており、各項目にはさらに複数のLessonが準備されています。各項目に含まれるLessonをすべて終了すると学習完了を証明する「SAS digital Learn Badge」(下図)が発行されます。   コースで学習できる内容 Statistics 1:

Analytics | Data Visualization | Learn SAS | Students & Educators
0
SASのオンライン学習コース「Skill Builder for Students」の紹介(3)Visual Analytics and Visual Statistics編

前回の記事では、学生であれば無料で利用可能なオンライン学習コース「Skill Builder for Students」のProgrammingコースについての概要を紹介しました。今回は引き続きまして、Visual Analytics and Visual Statisticsコースについて紹介していきます。 データアナリティクスへの興味・関心は近年急激に増加しています。ただ特に学習を始めた学生では、データアナリティクスと聞くと、どうしても複雑なモデルを組むことや機械学習を実施することだけに意識が向いている印象を受けます。しかしデータアナリティクスの本質はそこではありません。根幹にあるのは意思決定や業績の改善にどれほど貢献できるかです。データの可視化、見える化は学生ですとしばしば軽視されがちな部分ではありますが、意思決定や現状の把握においては非常に有用な有用な方法の一つです。 今回紹介するコースではSAS Viyaプラットフォーム上でSAS Visual AnalyticsとSAS Visual Statisticsを使用し、様々な可視化方法、予測モデルについて学習を行います。これらを学習することによってデータに潜む傾向やパターンを把握し、そしていかにその後のリスク管理や傾向の予測などへとつなげていくかといった実践的なデータアナリティクスを学ぶことが可能です。またSAS ViyaはSASによるプログラミング以外にもRやPythonといった他のプログラミング言語をサポートしているため、SASのコーディングができない方であっても不自由なく利用することが可能となっています。 Visual Analytics and Visual Statisticsコースへのアクセスは以下の手順です。 Skill Builder for Studentsへログイン 「Learn SAS」というタブをクリック 画面中央の「Start Learning」をクリック 「Visual Analytics and Visual Statistics」をクリック 展開される各種e-learningコースをクリック 画面下部にある「enroll」をクリック     Visual Analytics and Visual Statisticsコースの概要 本コースは SAS Visual Analytics 1 for SAS

Analytics | Learn SAS | Students & Educators
0
SASのオンライン学習コース「Skill Builder for Students」の紹介(2)Programming編

前回の記事では、学生であれば無料で利用可能なオンライン学習コース「Skill Builder for Students」についての紹介を行いました。このSkill Builder for Studentsには5つのコースが準備されており、今回の記事ではProgrammingコースについての概要を紹介します。このコースではSASプログラミング言語、そのコーディング方法について学習を行います。 近年、データ解析をプログラミングをせずに行うGUIデータ分析ツールが普及し始め、SASからもEnterprise Guideといった製品が提供されており、データ分析の民主化が進んでいます。もちろんこういったツールによって多くの人がデータ解析に関わる各種機能にアクセスできるようになったことは大変大きなメリットです。 しかし、もし将来データ解析を行う職に就きたいという思いがあるのであれば自分でコードを書き、前処理や解析を行うことができるようになるべきだと個人的には考えています。あくまで個人的な意見になりますがツールに依存してしまうと解析や前処理で実行できることには限界がありますし、またデータに関連する分野の学生であればシミュレーションなどを自由に行うことも難しいです。誤解がないように言うとGUIツールを使うことが悪というわけではなく、GUIのほうが生産性や共有性が高い場面もありますが、いざという時に自らの力で実装できるというのがプロフェッショナルなのではないでしょうか? この記事を見ている方の大部分は、今後データ解析に本格的に携わっていきたい、自らのスキルを増やしたいという方だと考えています。このコースを修了したからと言ってデータ解析のプロフェッショナルになれるかというとそうではありません。しかし、その第一歩としては非常に良い内容だと思います。私自身もこのコースを受講しています。ぜひ一緒に学びましょう!!   Programmingコースへのアクセスは以下の手順です。 Skill Builder for Studentsへログイン 「Learn SAS」というタブをクリック 画面中央の「Start Learning」をクリック 「Programing」をクリック 展開される各種e-learningコースをクリック 画面下部にある「enroll」をクリック コース内にある各レッスンではそれぞれのテーマに沿った内容が動画で紹介がされており、また適宜「Activity」や「Practice」という形で問題も出題されています。学生という立場からの個人的な感想ですが、単に動画を視聴するだけではなく、手を動かしつつ学習を行うことができるという点は非常に良いと感じています。デモとして紹介されている内容についてもプログラミングコードやデータセットも提供がされているので、動画を見つつ別画面で同じ手順を踏むとより理解も深まるかなと思います。 なおこのオンライン学習コースはすべて英語での提供です。もし英語が苦手でちょっと....という方は、動画の下部に動画の内容がすべてテキスト化されているので、適宜翻訳をかけつつ学習を行っていただければいいかなと思います。   Programinngコースの概要 programmingコースでは統計解析を行うためのプログラミングだけではなく、そもそものSASプログラミングの構成や、グラフ・レポートの作成、マクロなどを幅広く学ぶことができます。この記事の最後にあるように8つの項目に分かれており、各項目にはさらに複数のLessonが準備されています。各項目に含まれるLessonをすべて終了すると学習完了を証明する「SAS digital Learn Badge」(下図)が発行されます。   コース内容を実行する環境としては大きく3つあります。 SAS Virtual LabのSAS Studio SAS OnDemand for Academics のSAS Stuido 自らが契約しているSASソフトウェア ただ、今回の学習にあたり推奨するのは一番上の「SAS Virtual Lab」です。各コースでは様々なデータセット、プログラミングファイルを使いますが、SAS virtual Labではそれらがすべて既に保管されています。SAS

Analytics | Learn SAS | Students & Educators
0
SASのオンライン学習コース「Skill Builder for Students」の紹介(1)

私は現在大学で生物統計学を専攻していますが、「SASを使えるようになりたいけど具体的に何をすればいいかわからない...」といった声をしばしば耳にします。医療系に限らず、このような思いを抱えている学生の方も多いのではないでしょうか。以前にSAS Blogに投稿された 【冬休みに勉強しよう】アナリティクスの学習(1) Skill Builder for Students では、学生を対象として、SASソフトウェアや統計解析・機械学習を中心とした基礎的な知識、スキルをe-Learningを通じ習得可能な無料のオンライン学習プラットフォーム「SAS Skill Builder for Students」を紹介しました。 このSkill Builder for Studentsで提供されているe-learningの各項目の内容について、学生目線での簡単な感想とともに連載していきます。ぜひこの機会に一緒にSASを勉強してみましょう!   Skill Builder for Studentsの内容 Skill Builder for Studentsへログインすると「Learn SAS」「Get SAS Certified」「Career Resources」の3つのタブが存在しています。それぞれのリンク先では以下のような情報、学習コースが提供されています。 Learn SAS SASが提供している無料利用なソフトウェアやSAS認定資格についての概要 E-lerningコースと各種資格に対する対策 Get SAS Certificated SAS認定資格受験料割引の機会 試験日程のスケジュールやスコアレポート・デジタルバッジの請求 Career Resources データアナリティクスの専門性を学ぶ意義とキャリアの見つけ方 SASが提供しているインターンシップやフェローシップの紹介 SASコミュニティの紹介 SASソフトウェアに対する知識だけでなく、その後の長期的なキャリアプランも見据えた内容となっています。特に学生の方については、SASを学ぶことによってどのようなキャリアプランがあるのかのイメージがなかなかつきにくいかなと思いますので、その点でもオススメです!   E-Learning コースとSAS認定資格の内容 E-Learning コースと各種SAS認定資格については、「Learn SAS」のタブから、「Start

SAS Events | Students & Educators
0
#SAShackathonに参加してみよう~好奇心を形に~

データを使って新たな知見を見つけたいと思ったことはありませんか?実社会の問題を解決したいと思ったことはありませんか?そんなあなたにぴったりのイベントがあります! 昨年引き続きSASでは、SAS Hackathonというハッカソンイベントを開催します。過去のSASハッカソンについてはこちらをご参照ください。このイベントは開発者、学生、スタートアップ企業、SASの顧客・テクノロジーパートナーの皆様を対象としており、世界中から参加者を募集しています。 参加者は以下の分野の中から興味のある分野を選択し、テーマの設定、そのビジネス課題・社会問題の解決をチームで目指していただきます。チームは最低2人から最大10人までで、経験豊富なデータサイエンティストから初級者、パートナーやSASの専門家などなど幅広い方が、Microsoft AzureでSASとオープンソースを使用し世界規模でつながることができます。 また本イベントでは各チームにSAS Viyaを実行するクラウド環境や、メンタープログラムも用意されており、それぞれのチームにガイダンスやサポートが提供されます。SASコミュニティのHacker's Hubもご参考にどうぞ。   イベントスケジュール SASハッカソンのイベントスケジュールは以下のようになっています。 2021年12月1日〜2022年2月15日 登録期間 2022年1月26日 キックオフイベント 2022年1月5日~3月31日 デジタルラーニングポータルへのアクセスの有効化 2022年3月1日~3月31日 ハッカソン環境へのアクセス 2022年4月1日~4月7日 ビデオの録画とアップロード 2021年5月 ファイナリスト発表 2021年9月 受賞者イベント   ガイドライン SAS Hackathonは、開発者、学生、スタートアップ企業、SASの顧客、およびテクノロジーパートナーを対象としています。チームは、組織内の人々、組織とテクノロジパートナー、またはグループへの参加を検討している個人で構成できます。 チームが取り組む実際の課題(ビジネスまたは人道上の問題)の説明が必要です。 テクノロジーパートナーは、顧客や学生とチームを組むことができます。 スタートアップ企業は、顧客や学生とチームを組むことができます。 参加者である皆様の抱える問題をハッカソンで取り組うことが可能です。テクノロジーパートナーと協力する顧客は、一緒に新しい市場につながるパートナーシップに向けて取り組むこともできます。 学生と開発者はチームを形成できません。ただし、顧客、パートナー、またはスタートアップチームに参加すれば、参加できます。 ※参加をしたいがチームが見つかっていない学生や開発者は、次の登録手順の4において「Looking for a Team」を選択してください   登録手順 SAS Profileを作成します(既に持っている場合は2へ) SASハッカソンのイベントページにアクセス 画面上部中央にある「Register Now」をクリック 以下の3つのタイプから合うものを選んでクリック Team Leader 参加するチームが決定しておりチームリーダーである人 Team

Analytics | Data for Good
0
パブリックデータを使った子宮頸がんを取り巻く日本の状況の可視化

2021年11月、国が一時停止している子宮頸がんを防ぐHPV(ヒトパピローマウイルス)ワクチンの積極的な接種の勧奨の再開が厚生労働省の専門家による検討部会によって正式に承認されました。このHPVワクチンは世界保健機関(WHO)がその接種を推進しており、日本をはじめとして多くの先進国では公的接種とされています。この記事はData for Good活動の一環として、パブリックデータを用いて問題を可視化することで、子宮頸がんに対する認知や関心をより持っていただき、今後のHPVワクチンの普及につなげることを目的としています。   子宮頸がん 子宮頸がんのほとんどはヒトパピローマウイルス(HPV)というウイルスの感染が原因となり子宮の頸部に発生するがんの一種です。感染の経路は主に性的接触によるものであり、成人女性の大部分はHPVに感染するとされています。HPVに感染してもその多くは自然に消失しますが、一部は頸部の細胞が異常な変化を起こした子宮頸部異形成というがんの前段階(前がん病変)になります。そしてさらにその一部が数年から10年ほどで悪性腫瘍へと進展し、子宮頸がんを発症します。この子宮頸部異形成(前がん病変)の早期段階では自覚症状はほぼなく、病変を発見するためには子宮頸がん検診を受けることが必要ですが、自覚症状があまりないために検診を受けた段階で既に進行がかなり進んでしまっているケースもあります。 国立がん研究センターがん情報サービスは国立がん研究センターが運営している公式サイトであり、日本国内のがんに関する統計情報ががん種別に公開されています。今回はその統計情報の中から、子宮頸がんに該当するデータ(がん種:子宮頸部)を抜き出し、無料で利用可能なSAS OnDemand for Academicsを利用して可視化を行いました。日本での死亡者数は2019年度時点で年間約3,000名、罹患者数は2018年時点で約11,000名ほどとなっており、下図のように増加の一途をたどっています。 出典:国立がん研究センターがん情報サービス「がん統計」(人口動態統計) より作成 ま子宮頸がんの罹患者数は2009年~2018年(最新)まで10年連続で1万人を超えており、罹患者数は30歳頃から増え始め現在は45-49歳が最も罹患が多い年代層となっています。また罹患する年齢層が若年化していることも危険視されています。子宮頸がんに対して我々ができることは以下の二つです。 子宮頸がん検診を受けること(発見) HPVワクチンを接種すること(予防) 私たちにとって重要なことは、2年に1度の受診が推奨されている子宮頸がん検診によって異形成(前がん病変)を早期に発見すること。そして検診と同様に重要ことが、HPVワクチンを接種し対応するHPVの感染を防ぎ、子宮頸がんとなるリスクを下げることです。   HPVワクチン 子宮頸がんの原因となるHPV(ヒトパピローマウイルス)は現在100種類以上の存在が知られており、そのうちのいくつかは子宮頸がんを引き起こしやすいハイリスク型に分類されます。HPVワクチンにも様々なタイプがありますが、日本では定期接種の対象となっているのは2価(サーバリックス)と4価(ガーダシル)のワクチンで、接種することでおおよそ50~70%程の感染を防ぎ子宮頸がんになるリスクを減らすことが可能です。また2021年2月24日からは9価ワクチンも日本での取り扱いが開始されましたが定期接種の対象ではないため自費での接種となっています。     「接種の積極的な勧奨」について HPVワクチンは下図のようにいくつかの事業、法案の後押しもあり、その対象となる年齢の女性へ接種の積極的な勧奨が行われていました。しかし公費での定期接種開始後に副反応の報告が相次ぎ、副反応と接種との因果関係や、その頻度、海外での詳しい実態調査が必要とされ、厚生労働省は約半年間をめどに「接種の積極的な勧奨」の一時中止という決定を2013年6月に下しました。当初は半年間がめどとされていたものの、一時停止はその後も続き、ワクチンの有効性が様々な研究により示され2021年11月に接種の積極的な勧奨の再開が正式に決定されるまで約8年の月日がかかりました。 専門家らの研究結果によると、接種の積極的な勧奨が一時停止されるまではおおよそ70%であった定期接種の対象年齢での接種率もこの一時停止により現在は1%未満にまで落ち込んでしまっています。論文のデータをもとに出生年ごとのワクチン接種率を可視化したものが下図です。 Nakagawa S, Ueda Y, Yagi A, Ikeda S, Hiramatsu K, Kimura T. Corrected human papillomavirus vaccination rates for each birth fiscal year in Japan. Cancer Sci. 2020;111(6):2156-2162. doi:10.1111/cas.14406 より作成

Analytics | SAS Events | Students & Educators
0
SAS Global Forum2021で世界を覗こう

SAS Global Forumオンデマンド配信の紹介  SAS Global Forumは、年に一度開催される世界最大級のアナリティクス・カンファレンスです。南北アメリカ、アジア太平洋地域、EMEAの3つの地域ごとにイベントは分かれており、アジア太平洋地域は5/19(水)~5/20(木)に開催されました。イベントの内容は2021年6月25日(金)までこちらより、オンデマンドで視聴可能です。  Forumでは、様々な分野のトップ企業、スピーカーの刺激的な講演を聞くだけでなく、トレーニングや技術セッションといった学習機会も提供されます。また優れたデータアナリティクスの成績・教育が認められた学生や教育者に対しては表彰が行われました。ここでは一人の受賞者のセッションを紹介します。 Do Americans trust scientific experts?  このセッションはタイトルにもあるように、医者・環境学者・栄養士など“科学に関連する専門家”に対するアメリカ人の不信について取り扱っています。この話題は幅広く活用が期待でき、多くの人々に関連する事柄であるという背景があり、今回の講演のテーマとして設定されています。  使用されたデータは、科学者に対する人々の全体的な意見や個人の科学にまつわる知識などを調査して収集されています。収集したデータを用いて、記述統計による考察やディシジョンツリーをはじめとしたモデルによる分類の結果から、次のようなフィードバックを共有しています。 各専門家に対する肯定的/否定的な意見の割合は、医者が最も肯定的な割合が高く、その中でも人々と対面する機会が多い開業医に対する肯定的な意見が多い。 人々の政治的傾向に基づいて専門家への信頼度に差が出ている 科学知識が前提にある人の方が専門家への信頼を示している  スピーカーはこの結果をもとに、ワクチン接種の促進が可能になるのではないかという活用例を話しています。それは市民に専門への信頼に関する質問に答えてもらい、信頼の低い地域の人々に対してワクチン情報について教育・説得することでワクチン接種を増やすという仕組みです。  またスピーカーは私たちと同じ大学の学生で、コロナ禍に抱える問題も絡ませたセッションになっており、私たちにとても身近な内容になっています。  繰り返しになりますが、SAS Global Forum2021はより優れたキャリアにつなげる大きなチャンスであり、各セッションの様子はオンデマンドで視聴可能です。ぜひ自らの成長のために登録、ご覧ください。