Analytics

Find out how analytics, from data mining to cognitive computing, is changing the way we do business

Analytics
Ernesto Cantu 0
Una ruta hacia la innovación para la industria de manufactura en el contexto de una nueva realidad

Como una constante en la industria de manufactura, la innovación ha sido esencial para el desarrollo de productos, la experimentación con prototipos, la materialización de ideas disruptivas, así como la modificación de procesos y la colaboración con un extenso ecosistema. Tradicionalmente, la innovación avanza en dos vertientes. Por un lado,

Analytics | Artificial Intelligence | Innovation | Machine Learning | Risk Management
Joe Nyangon 0
Managing stranded asset risks in the energy sector with analytics

As the world moves toward a low-carbon future, the power and utilities industry faces significant financial and reputational risks due to the potential stranding of resources and assets. This transition to carbon-free energy sources could render carbon-intensive assets – such as coal- and gas-fired power plants, coal mines and hydrocarbon

Analytics
Cheryl Cass 0
How UNC Wilmington data science students are using SAS to drive business results for Lightcast

Students in the master's program in data science at the University of North Carolina Wilmington (UNCW) drove real-world results using SAS® Viya® for the labor market analytics company Lightcast. The project gave students practical analytical tools to solve a business challenge – invaluable career preparation. At the same time, Lightcast gained business insights

Advanced Analytics | Analytics | Work & Life at SAS
Luis Barrientos 0
ESG, la base para las finanzas sostenibles y el cumplimiento de metas climáticas en el sector bancario

Si bien los datos financieros se han utilizado tradicionalmente para evaluar y comparar el desempeño de las empresas, recientemente se ha sumado un nuevo criterio que va ganando relevancia: la información sobre iniciativas ambientales, sociales y de gobierno (ESG, por sus siglas en inglés), que se está utilizando para evaluar

Analytics
Rick Wicklin 0
What is the metalog distribution?

The metalog family of distributions (Keelin, Decision Analysis, 2016) is a flexible family that can model a wide range of continuous univariate data distributions when the data-generating mechanism is unknown. This article provides an overview of the metalog distributions. A subsequent article shows how to download and use a library

Analytics
Lexi Regalado 0
3 ways Blyott and SAS are revolutionizing hospital operations with real-time location tracking

For hospitals, managing inventory is an ongoing logistical challenge. The right equipment in the right spot is essential for safe and efficient hospital operations. That's why hospitals around the world turn to Blyott. Blyott is a plug-and-play machine learning and modular real-time-location-services (RTLS) provider. Their technology tracks the location of

Analytics
0
강력한 ModelOps의 필요충분조건! ‘SAS Model Manager’

IDC 마켓스케이프 보고서에서 MLOps 플랫폼 부문 리더 제품으로 선정된 ‘SAS Model Manager’, DataRobot, Databricks, Dataiku, Domino Data Lab등에 성능 우위 입증 다양한 비즈니스 영역에서 머신러닝의 적용이 점차 활기를 띄며 증가하고 있는 가운데, 많은 IT 리더들은 인공지능과 머신러닝 기술을 선택하고 구현하기 위한 필수 기술로 ‘모델 옵스(이하 ModelOps)’를 지목하고 있습니다. AI타임즈에 따르면,

Advanced Analytics | Analytics | Machine Learning
Mauro Souza 0
Clonagem de cartões: como usar a tecnologia para prever e inibir riscos

Mesmo após o período mais intenso da pandemia, é exponencial o aumento do número de pessoas que continuam a fazer compras ou acessar serviços financeiros diversos por meio de sites e aplicativos. A Pesquisa FEBRABAN de Tecnologia Bancária 2022 revela que os canais digitais somaram cerca de 80 bilhões de

Advanced Analytics | Analytics | Artificial Intelligence | Data for Good | Learn SAS | Students & Educators
Ricardo Galante 0
História do SAS LAB na Faculdade de Ciências da Universidade de Lisboa

Origem e benefícios do Laboratório Científico criado pelo SAS, na Faculdade de Ciências da Universidade de Lisboa. No final do ano passado, o SAS Portugal anunciou a criação de um laboratório científico - designado SAS-FCUL Lab - na FCUL - Faculdade de Ciências da Universidade de Lisboa, com o objetivo

Advanced Analytics | Analytics | Customer Intelligence
Héctor Cobo 0
Comercio directo al consumidor, un nuevo modelo que rompe paradigmas este Día de San Valentín

La experiencia de compra de millones de personas ha evolucionado recientemente hacia nuevas vertientes. Hoy, a diferencia del modelo tradicional de acudir físicamente a una atienda, recorrer los pasillos, pagar y volver a casa, con el avance de la digitalización y el crecimiento de aplicaciones, surge un nuevo modelo que

Advanced Analytics | Analytics | Artificial Intelligence
小林 泉 0
デジタルツインの話をする前にー将来を見通すために知っておくべき2種類の不確実性

近年、AI/アナリティクス市場に巨大ITベンダーが参入してきたことと、データサイエンティストがその存在感を高めようとしてきたことがあいまって、「予測」、「予測モデル」あるいは「AI予測」、「AIモデル」という言葉が、この市場で一般的になってきました。ビジネスにおいて、データ分析による洞察に基づいてよりよい意思決定と自動化を行うことーこれを「アナリティクス」と言いますーは、筆者がこの世界に足を踏み入れた20年以上前よりもっと前から、一部の「データを武器とする企業」において行われていました。それがより多くの企業に広まってきたということです。 今回は、より多くの方が「予測」について理解を深めてきているところで、その「予測」をもう少し深く理解し、近年の世界情勢において、大きく変化が求められている業界の1つである、流通小売業や製造業のサプライチェーン課題にフォーカスしたいと思います。まさにいま、サプライチェーンの大きな課題はレジリエンス強化です。そのための解決ソリューションとしてデジタルツインが注目されていますが、デジタルツインで何をすべきかを適切に見極めるために必要なおさらいとして、そもそも不確実性とは?について頭の中を整理したいと思います。 アナリティクスとは将来の不確実性に対して勇気を出して踏み出すーつまり行動するーことである。 「予測」という概念が広まることで、「予測」が確率的であるという認知も正しく広まってきました。需要予測値は確率的なものであるため、予測値そのものだけではなく安全在庫を計算するためにその確率を活用し、解約予兆、商品のレコメンデーションへの反応、不正検知、異常検知や歩留まりなど、アナリティクスつまり予測モデルを意思決定に適用するほとんどの意思決定は、すべて確率的なものです。よく見る予測モデル以外でも同様です。最適化も多くの場合その入力となる情報が確率的にばらついているケースが多いですし、近年、古典的な最適化手法が当てはまりずらいビジネス課題、例えばサプライチェーンの最適化、リアルタイムの配送スケジューリングなどの課題やカスタマージャーニーの最適化課題に対して適用される強化学習のアプローチにおいても、将来の報酬を確率的に計算して、目の前の一手を決めているといえます。 ここで唐突に余談ですが、リスクという言葉は日本語だとネガティブな意味に使われることが多いですが、本来はポジティブでもネガティブでもなく、単に確率的なバラツキを意味しています。なのでリスクを管理するということは、単に将来に対して確率的なバラツキを特定し意思決定の要因に組み込むということです。つまりこれはアナリティクスと同義です。なので、アナリティクスとアナリシスは語感は似ていますが、意味はだいぶ異なるということになります。 不確実性の1つは過去の経験から得られる確率 これは、上述した「リスク」です。どのような事象が起きたか?それが起こる確率はどれくらいか?そのインパクトはどの程度か?などについて過去の経験に基づいて洞察が得られるものです。例えば、輸送の遅れ、需要のバラツキ、ITシステムの障害、消費者の購買行動におけるバラツキ、設備などの停止、部品の故障率や製造品質などです。このような不確実性は過去のデータを分析することで予測可能です。このタイプの不確実性を今回は、「予測可能な不確実性」と呼ぶことにします。この「予測可能な不確実性」への対処に関しては、長年の経験から、多くのケースにおいて理論が確立してアナリティクスのベストプラクティスにすでに組み込まれています。 近年ニーズが増えてきたもう一つの不確実性への対応 こちらはずばり、過去に起きてないために予測することが困難な事象です。例えば、COVID-19、自然災害、特定地域での紛争や各国の政治情勢の変化などです。海洋の変化が予測とは大きく異なり漁獲高が計画と大きく乖離して輸出の計画が崩れて困っているという事例も該当します。特にサプライチェーン管理が必要な多くの企業は、近年特にこのような事象により、サプライチェーンが突如として混乱に見舞われるという経験をされているでしょう。このような不確実性は、過去に起きてない事象であっても、あらゆる情報を収集することで将来の起こる可能性についての洞察をある程度得ることができることもあります。ソーシャルメディアを分析することで、その国の経済の先行指標としての洞察を得たり、政治的な変化の予兆につなげるという活用方法も実際にされてきています。しかし、自社のサプライチェーンに関わる世界中のあらゆる状況に対して調べつくすということは、ほとんどの企業にとっては投資対効果的に見合わないと思います。したがって、サプライチェーンにおいては、そのような事象によって混乱した状態からなるべく早く回復するために、自社のサプライチェーンの脆弱性を理解し、起こりうるシナリオを想定して、それに備えることに投資の目を向けます。このようなタイプの不確実性を今回は、「予測困難な不確実性」と呼ぶことにします。 デジタルツインでは二つの不確実性への対応が価値をもたらす デジタルツインですが、そもそもビジネスをデータに基づいた意思決定にしている世界は部分的には47年前からデジタルツインだと言えます(ちょっと強引すぎますかね)。SASは1976年に穀物の収穫高の予測を電子的統計手法で行ったのがスタートです。ITの進化、IOT技術の進化に伴いより多くのデータが観測・収集できるようになり、ビジネスの一部だけでなくより全体がデータの世界で表現できる様になりました。近年ではそれを「デジタルツイン」と呼んでいます。サプライチェーンのデジタルツインを実現して、皆様はどんな課題を解決したいでしょうか?今回取り上げた「予測可能な不確実性」と「予測不可能な不確実性」を理解することで、デジタルツインを活用した「現実世界のよりよい理解」、「その理解に基づく意思決定」、「シナリオ分析」や「シミュレーション」を適切に行うことができるようになり、将来起こりうることに対して、よりよい対処が可能となるでしょう。 この話の続きが気になる方へ SASのデジタルツインの最新の取り組みについてはまずはこちらのプレスリリースをご覧ください。 また、デジタルツインやシミュレーションについて他のユースケースなどご興味ある方は、こちらのCosmo Tech社の(英語)もお役に立つと思います。    

Analytics | Fraud & Security Intelligence
Yuri Rueda 0
¿Cuáles son 3 principales tendencias que mostrarán los crímenes financieros en 2023?

Con la llegada del nuevo año, también llegan nuevos riesgos y formas en que las organizaciones criminales buscan realizar diversos crímenes financieros, como los fraudes o lavado de dinero. El 2023 traerá tres principales tendencias en temas de crímenes financieros a las que las entidades de esta industria deberán ponerle

Analytics | Cloud
Lindsay Marshall 0
4 ways software as a service is driving intelligent business decisions

Cloud technologies enable greater access to analytics. The shift to providing less complicated usability empowers decision-makers and offers a competitive advantage previously unattainable. Companies of all sizes and sectors embrace cloud technologies to address data and information challenges. IT departments are short-staffed and expected to support a large and varied

Analytics
SAS Korea 0
SAS, ‘머신러닝운영(MLOps) 플랫폼’ 부문 리더로 선정

‘SAS 모델 매니저’, IDC 마켓스케이프 평가에서 머신러닝 운영 플랫폼 리더로 선정 기업의 머신러닝 모델 생산을 지원하는 광범위한 서비스 및 제품 제공 역량 보유 세계적인 분석 선두 기업 SAS가 이번에 처음 발간되기 시작한 ‘IDC 마켓스케이프: 전세계 머신러닝 운영 플랫폼 2022년도 벤더 평가[1] 보고서에서 리더 기업으로 선정되었습니다. IDC는 ‘SAS 바이야(SAS® Viya®)’에 포함된

Advanced Analytics | Analytics | Cloud | Machine Learning
Charlie Chase 0
6 advantages of using software as a service for grocery supply chain planning

You're not alone if you’re still seeing local grocery stores with empty shelves.  Food shortages are still lingering in 2023. Increases in consumer demand, labor shortages and shipping capacity restraints continue to interrupt supply chains, particularly for grocery retailers. These problems have persisted throughout the pandemic, as seen with the shortages

1 13 14 15 16 17 131

Back to Top