Analytics

Find out how analytics, from data mining to cognitive computing, is changing the way we do business

Advanced Analytics | Analytics | Artificial Intelligence | Cloud
0
SAS Viya 4: Una nueva era para la analítica segura y escalable

En el mundo actual, donde los datos son el activo más valioso, la ciberseguridad se ha convertido en una prioridad absoluta para las organizaciones. Proteger información sensible mientras se permite un análisis avanzado y eficiente requiere plataformas que sean no solo potentes, sino también resilientes frente a las amenazas digitales.

Analytics
0
時間依存性治療(Time-varying treatments)の因果推論:周辺構造モデルにおけるIPTW法

注) 本コラムは『経時的に変化する治療(Time-varying treatments)に対する因果推論』と題した以前のコラムを、時間依存性治療に関する部分と周辺構造モデルにおけるIPTW法に関する部分に分割し、内容の追加と修正を行い再構成したものの一部となります。   はじめに 以前のコラムでは、「時間依存性治療とはなにか」、「時間依存性治療の因果効果はどのように定義されるのか」、「定義した因果効果はどう推定すれば良いか」について紹介しました。時間依存性治療の因果効果の推定にあたっては、一般に条件付けに基づく手法(e.g., 回帰、層別化、マッチング)は不適であり、g-methods※1と総称される推定手法が広く用いられています。本コラムでは、それらの中でも直感的な理解や実装が最も容易である「周辺構造モデルにおけるIPTW法(inverse probability of treatment weighting (IPTW) of marginal structural models (MSMs)」の理論とSASでの実装方法について簡単に紹介します。コラム全体の流れは以下の通りです。 時間固定性治療(time-fixed treatments)※2に対する周辺構造モデルとIPTW法の紹介 IPTW法の概要 周辺構造モデルの設定がなぜ必要か 時間依存性治療(time-varying treatments)に対する周辺構造モデルとIPTW法の紹介 SASでの実装 まとめ なお、本コラムは統計的因果推論に関する基本的な理解があることを前提としております。また、文献や書籍によっては、IPTW(Inverse probability of treatment weighting)は、単にIPW(Inverse probability weighting)と記載される場合もあります。しかし、IPW(逆確率重み付け)は治療効果の直接的な推定を目的とした治療変数に関する重み付け以外にも、打ち切りに対する補正(i.e., 打ち切り変数に関する重み付け)等でも用いられることがあり、本コラムでは前者であることを強調するためにIPTWと記載します。加えて、本コラムでは連続もしくは二値であるアウトカム(結果変数)が、研究最終測定時点でのみ測定される状況を想定します。アウトカムが生存時間(time-to-event)である場合や各時点の治療実施後に繰り返し測定される場合など※3、異なる状況における議論についてはreferenceにある文献等をご参照いただくか、著者宛に別途ご連絡いただけると幸いです。 ※1 (i) Inverse probability of treatment weighting of marginal structural models(周辺構造モデルにおけるIPTW法)、(ii) g-computation algorithm formula("g-formula")、(iii) g-estimation of stractural nested model(構造ネストモデルにおけるg-estimation)のという3手法の総称

Analytics
Sandra Hernandez 0
Cómo la IA está impulsando la personalización en las campañas de marketing durante la temporada navideña

La temporada navideña es uno de los momentos más esperados por los consumidores y una oportunidad para las marcas. En un entorno donde los clientes buscan experiencias significativas y ofertas relevantes, la inteligencia Artificial se ha convertido en el aliado perfecto para impulsar la personalización en las campañas de marketing.

Analytics
0
ModelOps로 구현하는 모델 관리 그 이상의 효과!

AI/ML 모델 개발 상의 어려움과 이를 해결하기 위한 접근법으로서 ModelOps의 필요성이 대두되고 있습니다. (참조 : AI/ML 기반 모델 개발, 과제와 해결방안은?) 이번 글에서는 ModelOps가 구체적으로 어떤 제품인지, 어떤 장점을 제공하며 구현방법은 어떠한지 등에 대해 설명드리도록 하겠습니다. 이에 앞서 ModelOps의 구현에 중요한 역할을 하는 ‘모델 거버넌스’에 대해 잠깐 짚어보도록 하겠습니다. 모델

Analytics
Noah Han 0
SoDA(SAS OnDemand for Academics)의 작업 방식

SoDA를 이용해 쉽게 배우는 데이터 과학 #4 지난 포스팅에서는 SoDA 인터페이스 구성과 그 기능에 대해 알아보았습니다. 오늘은 SoDA 인터페이스 중 ‘작업 모드’와 ‘프로세스 플로우’ 두 가지 요소에 대해 알아보겠습니다. 이 두 요소는 코딩에 익숙한 사용자와 코딩이 낯선 사용자 모두 쉽게 사용할 수 있도록 구성되어 있습니다. 이제부터 각각을 자세히 살펴보겠습니다. 1.

Advanced Analytics | Analytics | Data Management | Fraud & Security Intelligence | Risk Management
Luis Barrientos 0
Es posible predecir el deterioro crediticio de 3 a 6 meses antes de que ocurra

En un mundo donde la información viaja a la velocidad de la luz y las decisiones deben tomarse con precisión quirúrgica, contar con herramientas tecnológicas avanzadas ya no es un lujo, sino una necesidad. A pesar del auge de soluciones de analítica e inteligencia artificial, muchas instituciones aún no aprovechan

Analytics | Artificial Intelligence
Ensley Tan 0
Skills shortages holding up AI implementation across APAC governments

In most countries, the government sector isn’t the first place people look for technological innovation or the rapid adoption of a proven technology. However, governments everywhere are increasingly under pressure to be more productive and to get better value for taxpayers’ money. Many private sector organizations are looking to AI

Analytics
0
収益を上げたいので「金になる木」を手元に

「金のなる木」という植物があるが、意外にも花が咲くことをご存じだろうか。実は、11月から晩秋から冬にかけて、白や淡いピンクの可憐な花が咲くのだ。もちろん、品種や育て方によって差はあるが、株が大きく成長し、日照や水やりに気を配ることが大切な条件となる。もちろん一定の寒さに当てることも欠かせない。花が咲くと、「幸運を招く」「富をもたらす」「一攫千金」など、縁起が良いとされている。ちなみに、英名は「dollar plant」、まさに金のなる木である。 ところで、マーケティングの世界では、相対的市場シェアと市場成長率を基に商品や事業を4つのカテゴリー、「金のなる木」「問題児」「花形」「負け犬」に分類して分析する手法がある(プロダクトポートフォリオ)。この手法は、ボストン・コンサルティング・グループ(BCG)が開発した「BCGマトリクス」として知られており、例えば、マーケットシェアと市場成長率が高いものは「花形」、成長は高くないがシェアが高い、つまり収益性の高いものは「金のなる木」と分類される。商品戦略としては、取捨選択を行い、負け犬の事業や商品からは力を抜き、金のなる木に力を入れる、といった具合となる。 さて、SASでは様々なトレーニングメニュー(コース詳細とスケジュール)が提供されており、SASプログラミングの初級・中級コースやSAS Enterprise Guideの操作入門、統計初級コースは「金のなる木」に当たり、特に人気が高いため、受講を検討してみてはいかがだろうか。一方で、SASでは分析基礎トレーニングやデータサイエンティスト超入門講座なども提供されており、論理的思考やロジカルシンキング、データ分析のスキルを磨きたい方は、ぜひお問い合わせいただければ幸いである。 2024年12月初旬 相吉

Analytics | Artificial Intelligence | SAS Events
André Novo 0
A nova era da inteligência artificial generativa no Brasil

Entre as organizações que já adotaram a GenAI, os benefícios são notáveis. Mas obter ROI ainda é um desafio que requer atenção dos líderes de negócios A inteligência artificial generativa (GenAI) se firmou como uma força propulsora no mundo corporativo, transformando a interação entre humanos e tecnologia de maneira inédita.

Analytics
Hyeshin Hwang 0
AI 열풍 속에서 ‘AI 선도 기업’으로 가는 길

대한민국을 포함한 아시아태평양 지역의 데이터 및 AI 성숙도는 어느 정도일까요? ChatGPT 등장 이후 AI에 대한 관심이 급격히 높아지면서 많은 기업들이 AI 및 생성형 AI의 활용과 적용에 적극 나서고 있습니다. SAS는 최근 IDC에 의뢰해 기업의 AI 투자와 해결과제, 향후 계획에 대한 흥미로운 연구를 진행했습니다. 그 결과를 통해 AI 선도기업이 되기 위한

Advanced Analytics | Analytics | Data Management | Data Visualization
Javier López Gómez 0
La importancia de tener buenos datos de entrada en los modelos analíticos

En la actualidad, los modelos analíticos son herramientas esenciales para tomar decisiones basadas en datos. Desde prever tendencias hasta optimizar operaciones, los modelos analíticos dependen en gran medida de la calidad de los datos de entrada. La precisión, integridad y relevancia de estos datos son cruciales para obtener resultados confiables

Analytics | Artificial Intelligence
0
クラウドにおける AI と分析の環境への影響の調査

SASクラウドエコノミクスおよびビジネスバリューチームのSpiros PotamitisとFrancesco Raininiがこの記事の執筆に協力しました。2023年11月16日に公開された英語の記事を翻訳しております。 クラウド コンピューティングは数え切れないほど多くの業界のバックボーンとなり、組織が分析、機械学習、AI の力を活用して洞察とイノベーションを実現できるよう支援しています。 クラウドコンピューティングの急速な拡大により、クラウドは大きな二酸化炭素排出量を生み出すようになりました。背景として、クラウドは世界の二酸化炭素排出量の最大 4%を占めると計算されており、これは航空業界が排出する量よりも多いと考えられています。 これに対して何ができるでしょうか? オンプレミスの展開についてはどうでしょうか? クラウドとオンプレミスの議論に関しては、大手市場調査会社である IDC は、コンピューティングリソースの集約効率が高いため、オンプレミスと比較してクラウドの方が環境に優しい選択肢であると主張しています。したがって、AI と分析のワークロードをクラウドに移行するのが環境にとって最善の方法であると言われています。 クラウドでの効率を向上できる組織が増えれば、累積的な影響を考慮すると、小さな改善でも大きな違いを生む可能性があります。 SAS® Viya®と環境 SAS Viya は、  5 年間で最大 50 トンの CO2eの炭素排出量を削減する可能性があります。成長した木がこの量のCO2eを吸収するには 4,513 年かかると言われています。     カーボンフットプリントを楽しく探る 様々な要点を総合的に考慮し、Viya の潜在的な環境的利点を計算するために、私たちはGreen Algorithm Calculator を使用しました。これは、計算ワークロードの二酸化炭素排出量を推定して報告するツールです。計算を完了するために、さまざまな Azure Cloud アーキテクチャにわたる 1,500 を超えるテストを含むFuturum ベンチマーク調査の数値を使用しました。この調査では、Viya がオープンソースや主要な代替手段と比較して平均で 30 倍高速であることが示されています。 私たちは、大規模な組織に典型的なインフラストラクチャと分析のワークロードを想定しました。同時に、Futurum の調査で使用された技術的設定を反映しているため、計算に自信を持ってメリットの数値を適用できます。 グリーンアルゴリズム 計算機を使用して計算するには、次の手順に従います。 実行時間から始めます。50 人のデータ

Analytics
Noah Han 0
SoDA(SAS OnDemand for Academics) 둘러보기

SoDA를 이용해 쉽게 배우는 데이터 과학 #3 지난 포스팅에서는 SoDA의 서비스 가입 방법을 알아보았습니다. SoDA는 클라우드 환경을 이용하기 때문에 따로 설치할 필요가 없었고, 클라우드 할당을 위한 서비스 가입이 필요했습니다. 이번에는 SoDA 사용 환경인 SAS Studio의 다양한 구성을 살펴보도록 하겠습니다. SoDA는 SAS Studio를 통해 사용할 수 있습니다. SAS Studio는 웹 브라우저로

Analytics | Artificial Intelligence | Fraud & Security Intelligence | Machine Learning
Yuri Rueda 0
Estas son las nuevas tendencias que ayudan a las compañías contra el lavado de dinero

El lavado de dinero se continúa posicionando como una de las principales problemáticas ilegales, por su asociación con actividades ilícitas y crímenes financieros. Un reporte de Global Financial Integraty, titulado “Crímenes Financieros en América Latina y el Caribe: entendiendo los desafíos de los países y diseñando respuestas técnicas efectivas”, estimó

Analytics | Artificial Intelligence
Albert Qian 0
4 industries that stand to benefit from SAS Decision Builder

Making informed decisions quickly is more critical than ever. As markets shift and customer expectations evolve, companies need tools to process vast data and turn insights into actionable strategies. That’s where SAS Decision Builder comes in, now available through Microsoft Fabric's public preview announced at Microsoft Ignite. With SAS Decision

1 2 3 132

Back to Top