Advanced Analytics

Move beyond spreadsheets to data mining, forecasting, optimization – and more

Advanced Analytics | Analytics | Data Visualization
Thomas Bodenmüller-Dodek 0
Blogparade: MyParadise Found – Finden Sie Ihr persönliches Paradies!

Blogparade startet: Vor Kurzem wurde ja bereits der analytisch beste Ort der Welt gefunden und gekürt. Dazu hat SAS aus fast 150.000 Orten in rund 200 Ländern jede Menge Daten gesammelt und mit modernsten Machine-Learning-Verfahren ausgewertet. Rund 100 sogenannte Prädiktoren, also mögliche Einflussgrößen auf „paradiesische“ Verhältnisse, spuckten West Perth aus

Advanced Analytics | Machine Learning
SAS Korea 0
데이터 과학자가 뽑은 "머신러닝 알고리즘 개발 베스트 프랙티스 2탄"

현존 최고의 데이터 과학자들이 뽑은 머신러닝 알고리즘 개발 베스트 프랙티스! 그 두 번째 시간입니다. 시리즈를 처음 접하시는 경우 블로그 1탄을 참고해주세요. 기본기 다지기 희귀한 이벤트 탐지하기 수많은 모델 결합하기 모델 적용하기 국소 최적해에 빠지는 것을 방지하기 위해 모델 오토튜닝하기 시간 효과(temporal effect) 관리하기 '일반화' 이해하기 Chapter 5. 국소 최적해에 빠지는 것을 방지하기

Advanced Analytics | Analytics | Internet of Things
Cornelius Kimmer 0
Edge Analytics - So kommt Analytics in den Truck (Teil 3) HEUTE: Konfiguration der Software

ODER: Wie erstelle ich ein Edge Analytics Case auf Basis von SAS ESP, SAS Streamviewer und eines Modelltrucks? Das beschreibe ich in Teil 3. Rückblick: Im ersten Teil wurden die Idee und der Inhalt der SAS Streaming-Analytics-Demo beschrieben. Im zweiten Teil sind die einzelnen technischen Komponenten sowie die Software aufgelistet. Im

Advanced Analytics | Programming Tips
Makoto Unemi (畝見 真) 0
SAS Viyaで線形回帰

SAS Viyaで線形回帰を行う方法を紹介します。 言語はPythonを使います。 SAS Viyaで線形回帰を行う方法には大きく以下の手法が用意されています。 多項回帰: simpleアクションセットで提供。 一般化線形回帰または一般線形回帰: regressionアクションセットで提供。 機械学習で回帰: 各種機械学習用のアクションセットで提供。 今回は単純なサインカーブを利用して、上記3種類の回帰モデルを作ってみます。   【サインカーブ】 -4≦x<4の範囲でサインカーブを作ります。 普通に $$y = sin(x) $$を算出しても面白みがないので、乱数を加減して以下のようなデータを作りました。これをトレーニングデータとします。 青い点線が $$y=sin(x)$$ の曲線、グレーの円は $$y=sin(x)$$ に乱数を加減したプロットです。 グレーのプロットの中心を青い点線が通っていることがわかります。 今回はグレーのプロットをトレーニングデータとして線形回帰を行います。グレーのプロットはだいぶ散らばって見えますが、回帰モデルとしては青い点線のように中心を通った曲線が描けるはずです。 トレーニングデータのデータセット名は "sinx" とします。説明変数は "x"、ターゲット変数は "y" になります。 各手法で生成したモデルで回帰を行うため、-4≦x<4 の範囲で0.01刻みで"x" の値をとった "rangex" というデータセットも用意します。 まずはCASセッションを生成し、それぞれのデータをCASにアップロードします。 import swat host = "localhost" port = 5570 user = "cas" password = "p@ssw0rd"

Advanced Analytics | Analytics
SAS Korea 0
무료 플레이 게임 ‘월드 오브 탱크(World of Tanks)’ 분석으로 수십억 달러를 창출하다!

매일 전 세계 수백만 플레이어들이 가상의 전투에서 서로의 탱크를 무찌르기 위해 ‘월드 오브 탱크(World of Tanks)’에 접속합니다. 국내에서도 큰 인기를 끌고 있는 월드 오브 탱크는 벨라루스 게임 개발사인 워게이밍(Wargaming)의 온라인 MMO(대규모 다중 사용자) 슈팅 게임인데요. 등록된 온라인 사용자만 무려 1억1,000만명이 넘습니다. 워게이밍은 목표는 모든 레벨의 플레이어에게 멋진 경험을 제공하는 것으로, 부분 유료(free-to-play)

Advanced Analytics | Customer Intelligence | Machine Learning
Maarten Oosten 0
Bots, collusion and accountability in pricing

In the recent article, “Price-bots can collude against consumers,” the Economist discusses the consumer effects of prices set by price-bots. The article starts with an example of gasoline pricing strategies on Martha’s Vineyard. With a small number of gas stations on the island, the price-bots can cover all competitor prices frequently

Advanced Analytics
Rick Wicklin 0
The singular value decomposition: A fundamental technique in multivariate data analysis

The singular value decomposition (SVD) could be called the "billion-dollar algorithm" since it provides the mathematical basis for many modern algorithms in data science, including text mining, recommender systems (think Netflix and Amazon), image processing, and classification problems. Although the SVD was mathematically discovered in the late 1800s, computers have

Advanced Analytics | Analytics
SAS Visual Analytics: Hallo Emilia – Goodbye Daniel

Die Geburtenrate in Deutschland befindet sich derzeit auf dem höchsten Niveau seit 33 Jahren. Eine erfreuliche Entwicklung, und zugleich stellt es Eltern vor die schwere Entscheidung, welchen Namen der Nachwuchs tragen soll. Zahlreiche Webseiten und Bücher bieten Hitlisten und Namensbeschreibungen an, um die Auswahl zu erleichtern. Oder sollte man das

Advanced Analytics | Machine Learning
SAS Korea 0
최적의 ‘머신러닝 알고리즘’을 고르기 위한 치트키

“어떤 알고리즘을 사용해야 할까요?” 수많은 종류의 머신러닝 알고리즘을 맞닥뜨린 초급자 분들이 가장 많이 물어보는 전형적인 질문인데요. 사실 이 질문에 대한 답변은 하단 내용을 비롯한 수많은 요인에 따라 달라집니다. 데이터의 크기, 품질, 특성 가용 연산(계산) 시간 작업의 긴급성 데이터를 이용해 하고 싶은 것 그렇기에 숙련된 데이터 과학자(Data scientist)조차도 여러 알고리즘을 직접

Advanced Analytics | Analytics | Data Management | Machine Learning
Charlie Chase 0
At the end of the day, it’s all about analytics-driven forecasting

Analytics-driven forecasting means more than measuring trend and seasonality. It includes all categories of methods (e.g. exponential smoothing, dynamic regression, ARIMA, ARIMA(X), unobserved component models, and more), including artificial intelligence, but not necessarily deep learning algorithms. That said, deep learning algorithms like neural networks can also be used for demand forecasting,

Advanced Analytics | Machine Learning
SAS Korea 0
데이터 과학자가 뽑은 "머신러닝 알고리즘 개발 베스트 프랙티스 1탄"

1980년대 후반에만 해도 머신러닝(machine learning)이나 데이터 과학자와 같은 개념은 없었습니다. 대신 통계, 분석, 데이터 마이닝, 데이터 모델링과 같은 단어가 사용됐는데요. 이후 글로벌 기업들은 30년 이상 머신러닝 모델을 연구해 왔으며, 페이스북의 이미지 인식 소프트웨어, 아마존의 음성 비서 알렉사, KT의 인공지능 서비스 기가 지니(GiGA Genie)까지 그 결과들이 연이어 쏟아지고 있죠! 이러한 결실

Advanced Analytics
Fiona McNeill 0
Try it - you'll like it...

It's a common mantra many parents use to encourage their children to expand their food choices and try something new. Even as adults we’re often more comfortable easing into the unfamiliar, taking small bites, tiny samples, even dipping a toe in the water before diving in headfirst. Software is no

1 29 30 31 32 33 55

Back to Top