5月23日に開催されたSAS Forum Japan 2017の「SAS Viyaディープダイブ」セッションでは、SASのAIに搭載されている画像処理機能が入門レベルとして紹介されました。 従来からSASを活用されている方々にとっては、「SAS」と「画像処理」って、なかなか結びつかないのではないでしょうか? 「画像処理技術」に関して、SASではどのようなアプローチをとってきているのか...を、過去、現在、そして未来に分けて紹介しています。 詳細(スライド内容)に関しては、以下をご覧ください。(SlideShareに公開済み) Pythonで操るSAS Viyaの画像処理技術入門編 from SAS Institute Japan 詳細(講演ビデオ)に関しては、以下をご覧ください。(YouTubeに公開済み)
Tag: machine learning
みなさま、SAS Viyaはご存知でしょうか? SAS ViyaはSASが2016年末に出した新データ分析プラットフォームでして、データの探索、整形から機械学習まで、幅広くデータ分析することができる万能品です。 こんな感じのロゴです。 SAS Viyaの特徴にインメモリエンジンによる分散処理とオープンというものがあります。 SAS Viyaでのデータ分析はすべてCASというエンジンで実行されるのですが、このCASはサーバのメモリ上にデータをロードし、分析処理が展開されます。しかも複数サーバ構成でも良い感じにスケールして並列分散処理するので、1台のサーバにデータが乗らないとか、1台だけだと遅いとかいうことはありません。 SAS Viyaの特徴 さらにSAS Viyaはオープンな特徴があります。 どうオープンなのかというと、実は裏表なく嘘のつけない性格・・・というわけではありません。 SAS ViyaはSAS言語のみならずPythonやR、Java、LuaそしてREST APIといったさまざまな言語で操作することができるオープン性を持っています。 従来のSAS製品だとSAS言語を覚えないと使うことができなかったのですが、SAS Viyaでは多くのデータサイエンティストさんが使っているPythonやRでデータ分析ができます。しかも同じプラットフォームでデータ分析するので、言語間で違う結果が出るということはありません。同じ設定で分析すれば、どの言語を使っても同じ結果が返ってきます。 さらにいえばPythonやRでデータ分析するときも、多くの場合は1台のサーバやパソコンで処理すると思います。そのさい、サーバやパソコンはCPUやメモリのすべてをデータ分析に割くということはありません。マルチコアCPUを使っていても、大体はシングルコアで処理されます。 しかしSAS Viyaではリソースを使い切ります。4コアであれば4コア、サーバ3台構成であれば3台を余さず使って、より速く効率的に分析します。 全体像でいうとこんな感じです。 どうやって使うの? PythonやRでSAS Viyaを使いはじめるときは、まずはSWATというOSSを導入する必要があります。 SWATはSpecial Weapon and Tacticsの略・・・ではありません。 SAS Scripting Wrapper for Analytics Transferという、SAS Viyaを操作するためのラッパーです。SASが作って、GitHubで公開しています。 Python SWAT https://sassoftware.github.io/python-swat/index.html R SWAT https://github.com/sassoftware/R-swat これらをpip installやinstall.packagesで入手して使いはじめることができます。 SWATはWindows、Linux、MacOSいずれもサポートしていますので、お好きなプラットフォームに導入できます。 Pythonでのプログラミング例はこんな感じです。たったこれだけで、SAS Viyaを使って決定木モデルを作ることができます。とても簡単です。 #
Ich möchte Sie etwas fragen? Sehen Sie Risikomanagement als: alleinige Aufgabe des Chief Risk Officer, als Pflichtübung, die jede Menge Papierkram – aber keine wirklichen Vorteile – bringt; oder Verantwortung von allen im Unternehmen und eine Chance, eine sichere Umgebung für heikle Geschäftsentscheidungen zu schaffen? Natürlich sind diese beiden Auffassungen
Deep learning made the headlines when the UK’s AlphaGo team beat Lee Sedol, holder of 18 international titles, in the Go board game. Go is more complex than other games, such as Chess, where machines have previously crushed famous players. The number of potential moves explodes exponentially so it wasn’t
Machine learning seems to be the new hot topic these days. Everybody's talking about how machines are beating human players in chess, Jeopardy, and now even Go. In the future, artificial intelligence will drive our cars and our jobs will be taken over by robots. There’s a lot of hype,
In meinem vorherigen Beitrag ging es darum, wie sich das Internet of Things (IoT) über den aktuellen Hype hinaus geschäftsfähig machen, also operationalisieren, lässt. Und um die Hürden, die Unternehmen in Sachen Analytics dafür überwinden müssen. Immer wieder spreche ich in diesem Zusammenhang mit Kunden über ein Thema, das nicht
Via streaming data, Jim Harris says machines can learn some amazing things without being programmed with domain knowledge.
In 2011, Loughran and McDonald applied a general sentiment word list to accounting and finance topics, and this led to a high rate of misclassification. They found that about three-fourths of the negative words in the Harvard IV TagNeg dictionary of negative words are typically not negative in a financial
Seit 2009 sollen der Gesundheitsfonds und der morbiditätsorientierte Risikostrukturausgleich in der deutschen gesetzlichen Krankenversicherung (GKV) für eine ausgewogenere Verteilung der Einnahmen bei den Kassen sorgen. Ziel ist ein sozialer Ausgleich für unterschiedliche Einkommensstruktur und Krankheitslasten bei den Mitgliedern. Über einen sehr interessanten Nebeneffekt, den dieses regulatorische System ungewollt ausgelöst hat,
Machine learning is a type of artificial intelligence that uses algorithms to iteratively learn from data and finds hidden insights in data without being explicitly programmed where to look or how to find the answer. Here at SAS, we hear questions every day about machine learning: what it is, how it compares to
People come from all over the world to attend this highlight of the season. It’s been a tradition for decades. Hotels book months in advance. Traffic is horrendous in the city center. The coveted tickets can cost thousands of dollars, but tens of thousands of people are lucky enough to score them. In
I've long been fascinated by both science and the natural world around us, inspired by the amazing Sir David Attenborough with his ever-engaging documentaries and boundless enthusiasm for nature, and also by the late, great Carl Sagan and his ground-breaking documentary series, COSMOS. The relationships between the creatures, plants and
はじめに 以前このブログ「グラフ理論入門:ソーシャル・ネットワークの分析例」でもご紹介しましたが。SASは従来からネットワーク分析(グラフ分析)をサポートしています。ネットワーク分析の基本的なことはまず上記のブログをご参照ください。 今回は、プログラミングスキルがあるアプリケーション開発者やデータサイエンティスト向けです。Pythonからネイティブに利用できるSAS Viyaを使用して、ネットワーク分析をする簡単な利用例をご紹介します。 2016夏にリリースされたSAS Viyaは、アナリティクスに必要な全てのアルゴリズムを提供しつつ、かつオープンさを兼ね備えた全く新しいプラットフォームです。これにより、SAS Viyaをアプリケーションにシームレスに組み込むことや、どのようなプログラミング言語からでもアナリティクス・モデルの開発が可能になりました。今回は、SASのパワフルなアナリティクス機能にアクセスするために、そのオープンさがどのように役立つののかにフォーカスします。 前提条件 SAS Viyaは、REST APIにも対応しているため、それを使用しても良いのですが、一般的には、使い慣れたプログラミング言語を使用する方が効率が良いと考えられるため、今回は、データサイエンティストや大学での利用者が多い、Pythonを使用したいと思います。 デモ環境としては、Pythonコードを実行できるだけでなく書式付テキストも付記できる、Webベースのオープンな対話型環境であるJupyter Notebookを使用します。Jupyterをインストールした後に、SAS Scripting Wrapper for Analytics Transfer(SWAT)をインストールする必要があります。このパッケージは、SAS Cloud Analytic Services(CAS)に接続するためのPythonクライアントです。これにより、Pythonから全てのCASアクションを実行することが可能となります。SWATパッケージの情報やJupyter Notebookのサンプルはこちらをごらんください。https://github.com/sassoftware SAS Cloud Analytic Services(CAS)にアクセスする SAS Viyaのコアにあるのは、SAS Cloud Analytic Services(CAS: キャス)というアナリティクスの実行エンジンです。"CASアクション"という個々の機能を実行したり、データにアクセスしたりするためには、CASに接続するためのセッションが必要となります。セッションからCASへの接続には、バイナリ接続(非常に大きなデータ転送の場合にはこちらが推奨です)あるいは、HTTP/HTTPS経由のREST API接続のどちらかを使用することができます。今回は、デモンストレーション目的で非常に小さなデータを扱うので、RESTプロトコルを使用します。SAS ViyaとCASのより詳細な情報はこちらのオンラインドキュメントをごらんください。 多くのプログラミングと同様、まずは使用するライブラリの定義からです。Pythonでは、importステートメントを使用します。非常に良く使われるmatplotlibライブラリに加えて、ネットワークをビジュアライズするためのnetworkxも使用します。 from swat import * import numpy as np import pandas as pd import matplotlib.pyplot as
Machine learning is taking a significant role in many big data initiatives today. Large retailers and consumer packaged goods (CPG) companies are using machine learning combined with predictive analytics to help them enhance consumer engagement and create more accurate demand forecasts as they expand into new sales channels like the
When shopping for a new TV, with many sets next to each other across a store wall, it is easy to compare the picture quality and brightness. What is not immediately evident and expected is the difference between how the set looked in the store and how it looks in your
“What we are experiencing from analytics today is nothing short of a revolution,” said CEO Jim Goodnight, who spoke at Analytics Experience 2016 and set the stage for the conference’s executive panel. “Right now, my primary mission is to ensure people understand the limitless possibilities that lie before us, given
Who says machine learning can't be fun? A crew of us from SAS went to San Francisco for the recent KDD conference, which bills itself as "a premier interdisciplinary conference, [which]brings together researchers and practitioners from data science, data mining, knowledge discovery, large-scale data analytics, and big data." We brought
Time series machine learning techniques show great promise for the analysis of health care wearable data. As our busy lifestyles render continuous monitoring more and more essential, the need to analyze data to find correlations between these data streams becomes even more important, because they can provide important cues to
Die Fortschritte im Bereich Analytics sind rasant. Während vor wenigen Jahren nur wenige Experten Themen wie Machine Learning, Data Mining oder Cognitive Computing diskutierten, beschäftigen sich jetzt auch Nicht-Mathematiker und Fachbereiche mit diesen Begriffen und versuchen, diese einzuordnen. In meinen Gesprächen mit CIOs, zunehmend auch mit Chief Digital Officers, treffe
Asking about the benefits of artificial intelligence and machine learning reminds me a little of the transition to suitcases with wheels. Do you remember lugging around those old suitcases? If not, good for you - this original advertisement from US Luggage will take you back! Thank Bernard Sadow for persistence with his
Machine learning applications for NBA coaches and players might seem like an odd choice for me to write about. Let us get something out of the way: I don’t know much about basketball. Or baseball. Or even soccer, much to the chagrin of my friends back home in Europe. However,
I’m an avid open water swimmer. In order to succeed in open water races I must do two things: I must sight properly in order to swim the straightest line possible in the right direction. The straighter the line, the less I have to swim. I must use a powerful,
When a person feels sufficiently wronged to lodge a complaint with the Consumer Financial Protection Bureau (CFPB), there’s likely to be some negative sentiment involved. But is there a connection between the language they use and the likelihood they will be compensated by the offending company? At the upcoming Sentiment
I recently read an article in which the winner of a Kaggle Competition was not shy about sharing his technique for winning not one, but several of the analytical competitions. “I always use Gradient Boosting,” he said. And then added, “but the key is Feature Engineering.” A couple days later,
For those of us who haven’t been hermits stuck in a remote section of Middle Earth, The Lord of the Rings book and movie series brought to our awareness the mythical powers of The One Ring: An object with a sinister inscription that reads “One Ring to Rule Them All.”
Optimization for machine learning is essential to ensure that data mining models can learn from training data in order to generalize to future test data. Data mining models can have millions of parameters that depend on the training data and, in general, have no analytic definition. In such cases, effective models
"Los sistemas financieros en el mundo están enfrentando importantes transformaciones que impactan no solo sus modelos de negocio sino la forma de relacionarse con los consumidores financieros". Esta frase, pronunciada por el Superintendente Financiero de Colombia, Gerardo Hernández, en la pasada Cumbre Bancaria en Cartagena, resultó el preámbulo perfecto para
"Shall we play a game?" If you’re a child of the ’80s like me, you might recognize this famous line from the movie WarGames. This innocent-sounding question comes not from one of the movie’s human stars, but from a military super-computer named Joshua, after a bored high school student, played
Analytics, statistics, operations research, data science and machine learning - with which term do you prefer associate? Are you from the House of Capulet or Montague, or do you even care? Shakespeare's Juliet derides excess identification with names in the famous play, Romeo and Juliet. "What's in a name? That which we call
When you go to the grocery store, you see that items of a similar nature are displayed nearby to each other. When you organize the clothes in your closet, you put similar items together (e.g. shirts in one section, pants in another). Every personal organizing tip on the web to