The Data Roundtable
A community of data management expertsIn my previous post I discussed the practice of putting data quality processes as close to data sources as possible. Historically this meant data quality happened during data integration in preparation for loading quality data into an enterprise data warehouse (EDW) or a master data management (MDM) hub. Nowadays, however, there’s a lot of
We had just completed a four-week data quality assessment of an inside plant installation. It wasn't looking good. There were huge gaps in the data, particularly when we cross-referenced systems together. In theory, each system was meant to hold identical information of the plant equipment. But when we consolidated the
.@philsimon says that it's never too early to think about the IoT and data management.
In my last post we started to look at two different Internet of Things (IoT) paradigms. The first only involved streaming automatically generated data from machines (such as sensor data). The second combined human-generated and machine-generated data, such as social media updates that are automatically augmented with geo-tag data by
.@philsimon on what to do when the data breaks bad.
The concept of the internet of things (IoT) is used broadly to cover any organization of communication devices and methods, messages streaming from the device pool, data collected at a centralized point, and analysis used to exploit the combined data for business value. But this description hides the richness of