Tag: data warehouse

Georg Franzke 0
DataVault – oder warum ein unfertiges Datenmodell glücklich macht!

Datenmodellierung ist sicher eine der komplexesten Aufgaben beim Aufbau eines Data Warehouse (DWH). Dies liegt vor allem daran, dass in der Phase der Modellierung unterschiedlichste Analyseanforderungen zu berücksichtigen sind. Und teilweise ändern sich diese Anforderungen schneller, als man mit dem Datenmodellieren vorankommt. Aktuelle Gründe für ständige Änderungen sind zum Beispiel

Hartmut Schroth 0
Big data, IoT and data warehouse?

It's the age of big data and the internet of things (IoT), but how will that change things for insurance companies? Do insurers still need to consider classic data warehouse concepts based on a relational data model? Or will all relevant data be stored in big data structures and thus

Hartmut Schroth 0
Don't let your data warehouse be a data labyrinth!

Auditability and data quality are two of the most important demands on a data warehouse. Why? Because reliable data processes ensure the accuracy of your analytical applications and statistical reports. Using a standard data model enhances auditability and data quality of your data warehouse implementation for business analytics.

Vincent Cotte 0
Taking the big data dive with Hadoop

Demand for analytics is at an all-time high. Monster.com has rated SAS as the number one skill to have to increase your salary and Harvard Business Review continues to highlight why the data scientist is the sexiest job of the 21st century.  It is clear that if you want to be