Uncategorized

Analytics | Data for Good | Data Visualization
SAS Japan 0
新型コロナウイルスの感染拡大を追跡するためにデータ・ビジュアライゼーション(視覚化)を利用する

この記事はSAS Institute Japanが翻訳および編集したもので、もともとはMark Lambrechtによって執筆されました。元記事はこちらです(英語)。 世界的な公衆衛生問題が拡散する際、初期段階では多くの不明事項が存在するものですが、新型コロナウイルスのように急速な感染拡大の場合は特にその度合が高まります。データ・ビジュアライゼーションは、傾向を理解したり、複数のデータポイントから意味のあるストーリーを組み立てたりするための優れたスタート地点となりえます。ウイルスの拡散状況を視覚化できる機能は、問題意識の喚起、そのインパクトの理解、そして究極的には予防努力の支援に役立つ可能性があります。 2019年12月31日、世界保健機関(WHO)の中国オフィスは、中国湖北省の武漢市で検知された原因不明の肺炎の感染ケースについて報告を受けました。最初の報告以降、この新型コロナウイルス(SARS-CoV-2)は世界的な感染拡大を見せており、感染者は30ヶ国以上の数万人に及び、「新型コロナウイルス感染症(COVID-19)」と呼ばれる急性呼吸器疾病を引き起こしています。 この状況を受け、SASは新型コロナウイルスの現況、場所、拡散状況、トレンド分析を描き出すインタラクティブなレポートを作成しました。 元になるデータは日次で更新されており、感染拡大の進行状況を定期的にチェックすることや、世界的な拡散状況を時間軸に沿ったアニメーションで確認することができます。この対話操作型レポートでは以下のことが行えます。 過去10日以内に新たに確認された感染者の数を調べ、このウイルスの感染率、回復率、死亡率がどのように推移しているかを確認する。 このウイルスがどの地域に侵入したかを調べ、発生地の中国と世界の残りの地域とで状況を比較する。 感染確認済みのケースを分析することで、回復率が時の経過に沿ってどのように変化しているかを理解する。 このレポートはSAS Visual Analyticsと、WHO、CDC、ECDC、NHC、およびDXYからのデータ(JHU CSSEによってコンパイルされたもの)を用いて作成されています[訳注:JHU CSSE=米国ジョンズ・ホプキンズ大学システム科学工学センター]。 SAS Visual Analyticsで作成した新型コロナウイルス・レポートの概要 「新型コロナウイルス感染症(以下、COVID-19)」の感染拡大に関するサマリー情報を手早く確認したい場合は、こちらをご覧ください。 このサマリー情報は、世界各地の統計情報を用いて日次で更新されています。このWebページのこれ以降では、各種レポートからの重要な洞察をスクリーンショットでご紹介します。実際のレポートでは、最新のデータに基づき、ご自身で対話操作しながら統計情報や分析結果を閲覧することができます。 地域別の詳細情報を確認したい場合や、対話操作型レポート全体を探索したい場合は、サマリー情報ページの右上隅にある「Full Report」ボタンをクリックすると、完全なダッシュボードを起動できます。 最初に表示されるダッシュボード・ビュー([Status]タブ)では、日次で更新されるデータに基づき、COVID-19の感染拡大の概況を簡単に確認できます。具体的には、新たに確認された感染者数、回復者数、死亡者数などを地域別にフィルタリングして閲覧することができます。 図1: COVID-19の感染拡大の概況。新たに確認された感染者数、回復者数、死亡者数などを地域別にフィルタリングして閲覧することができます。 レポートの[Locations]タブ(下の図2)では、 全世界および特定国の新型コロナウイルス関連データを確認できます。 図2:[Locations]タブでは、全世界および特定国の新型コロナウイルス関連データを確認できます。 特定国のデータを見るには、左上のフィールドに国名を入力します(下の図3)。 図3: 国名を入力すると、その国の詳細情報だけに集中することができます。 新型コロナウイルスの最初の感染者が中国で報告されてから既に何週間も経過しており、感染拡大は世界各地へと広がっています。私たちは、Esri社のGISマッピング・ソフトウェアから取得した地理空間データのレイヤーを追加することで、対話操作型の画面を用いて、中国とその他の国々にまたがる形で新型コロナウイルスの拡散状況を探索できるようにしました。 [Spread]タブでは、SAS Visual Analyticsの時系列アニメーション機能(下の図4)を用いて、ウイルスが世界全体に拡散していく様子を見ることができます。アニメーションを再生すると、中国国内での拡散状況や、世界全体の拡散状況および深刻度を確認できます。 図4: 時系列アニメーションで、ウイルスが世界全体に拡散していく様子を見ることができます。 [Trend Analysis]タブでは、様々なビジュアライゼーションを切り替えながら、COVID-19の感染拡大に関連したその他のデータの傾向を見ることができます(下の図5)。 図5: 日次の感染者数/死亡者数のトレンド分析 [Epidemiological Analysis]タブでは、罹患率および有病率を見ることができます。 図6: 10万人あたりのCOVID-19感染者数を国ごとに見る 図7: 期間有病率を国または地域ごとに見る [Collective Insights]タブは、全世界のまたは国ごとの感染拡大状況を1つの表にまとめています(下の図8)。

Analytics | Fraud & Security Intelligence
Jeanne (Hyunjin) Byun 0
자금세탁방지(AML) 및 사기 범죄에 대한 5가지 예측

평화롭고 안전한 일상을 지키기 위해 우리가 맞서 싸워야 할 대상은 사실 바이러스 말고도 꽤 많습니다. 자금세탁방지(AML)를 비롯해 신원 도용 및 보험 사기 등, 끝없이 진화하는 금융 범죄와 각종 사기 수법들이 바로 그 중 하나입니다. 2020년에도 기술적인 변이(?)를 멈추지 않을 그들을 막기 위해 우리는 무엇을 준비하고 유념해야 할까요? SAS 사기 방지

Analytics | Artificial Intelligence | Machine Learning
Jeanne (Hyunjin) Byun 0
AI 분석으로 팬데믹(pandemic)에 맞서는 방법

2019년 12월, 중국을 시작으로 발생한 코로나바이러스감염증-19(COVID-19)가 전 세계로 확산되며 190개 국가에서 32만명이 넘는 확진 환자가 발생했습니다. (2020년 3월 23일 기준) 세계보건기구(WHO)는 3월 11일 감염 확산세가 지속되자 홍콩독감(1968), 신종플루(2009)에 이어 사상 세 번째로 코로나19에 대해 팬데믹(pandemic; 세계적 대유행)을 선포했는데요. 한국 역시 지난 2월 23일 코로나19 대응 수준이 ‘심각’ 단계로 격상되며 확진자가

Analytics | Data for Good | Data Visualization
Jeanne (Hyunjin) Byun 0
데이터 시각화로 COVID-19 경로 추적하기

인류의 건강을 위협하는 문제, 특히 코로나바이러스(COVID-19)처럼 빠르게 전파되는 질병이 확산되는 초기 단계에는 예상할 수 없는 많은 변수들이 존재합니다. 이러한 단계에서 데이터 시각화를 활용하면 빠르게 추세를 파악하고 단편적인 데이터들로부터 유의미한 결과를 도출할 수 있습니다. 바이러스 경로 시각화는 사람들에게 경각심을 일깨우고 바이러스의 영향력을 알림으로써, 궁극적으로 질병 예방 활동에 도움이 될 수 있을

Data Management | Fraud & Security Intelligence
Nuth Ratanachu-ek 0
A practical guide to improve the effectiveness of watch list screening

Watch list screening has been one of the rules with highest false-positive rate. Watch list screening has been one of the pillars for know your customer (KYC) and anti-money laundering (AML) regulatory requirements since the beginning. It was introduced to prevent known criminals (or known high risk entities) from utilizing

Advanced Analytics | Artificial Intelligence | Customer Intelligence
Luis Barrientos 0
IA potencia el avance de la Gestión de Riesgo hacia la Resiliencia y Optimización de la Rentabilidad del Negocio

Todos los negocios enfrentan desafíos de muy diferentes índoles, pero cuando nos referimos a aquellos que basan parte significativa de sus ingresos en el crédito - como los sectores financiero, telecomunicaciones y departamental o minorista-, éstos son los primeros en enfocar su atención y esfuerzo en alternativas creativas y hasta

Advanced Analytics | Machine Learning
Jeanne (Hyunjin) Byun 0
SAS, 7년 연속 ‘데이터 사이언스 및 머신러닝 플랫폼’ 부문 리더 선정

SAS가 최근 글로벌 시장조사기관 가트너에서 발표한 ‘2020 가트너 매직 쿼드런트: 데이터 사이언스 및 머신러닝 플랫폼(2020 Gartner Magic Quadrant for Data Science and Machine Learning Platforms)’ 보고서에서 비전 완성도 및 실행력을 인정받아 리더로 선정됐습니다. SAS는 해당 부문에서 유일하게 7년 연속 리더로 선정됐는데요! 작년 대비 괄목할 만한 성장을 보이며 최상위 리더 제품으로

1 53 54 55 56 57 256