Uncategorized

Programming Tips
Rick Wicklin 0
The probability integral transform

This article uses simulation to demonstrate the fact that any continuous distribution can be transformed into the uniform distribution on (0,1). The function that performs this transformation is a familiar one: it is the cumulative distribution function (CDF). A continuous CDF is defined as an integral, so the transformation is

Analytics
SAS Taiwan 0
資料處理時若遇到編碼/亂碼問題應如何解決?

一、可能有的狀況 錯誤訊息: [Error] Failed to transcode data from utf-16le to wlatin1 encoding because it contained characters which are not supported by your SAS session encoding. Please review your encoding= and locale= SAS system options to ensure that they can accommodate the data that you want to process. 資料匯入後都是亂碼 二、造成原因 資料與電腦環境的編碼不同,便可能造成使用者資料匯入後無法使用

Analytics
Joon-Hyung Koh 0
누구나 손쉽게 사용 가능한 AI 기반의 시각화 분석

시각화 분석을 위해서는 빅데이터를 활용할 수 있어야 하며, 시각화 및 고급 분석, 셀프 서비스, 리포팅 기능을 갖춰야 합니다. 아울러 데이터 핸들링, 분석, 리포트 생성에 이르는 전 과정에서 인사이트를 확보하고자 하는 모든 이들이 자유롭게 사용할 수 있어야 합니다. SAS AI 기반의 시각화 솔루션은 완전 초보자도 자동 추천과 자동 예측 기능을 사용하여

Analytics | Artificial Intelligence | Machine Learning
Loren Sylvan 0
An analytics how-to for small and midsize manufacturers

Small and midsize (SMB) manufacturers are critical drivers of innovation and productivity, and agility often gives them a competitive advantage over larger organizations. But they have unique challenges compared to larger manufacturers who have the resources and capital to achieve greater economies of scale. To take advantage of their agility,

Advanced Analytics
Jinmo Choi 0
텍스트 데이터로 모델 성능 높이는 꿀팁

최근 화두가 되는 빅데이터와 머신 러닝은 예측 모델의 성능을 올리기 위한 방안으로 시작된 것입니다. SAS VDMML(Visual Data Mining and Machine Learning)은 예측 모델 개발 시 텍스트 데이터를 이용하여 모델의 성능을 높여주는 텍스트 분석 툴로, 비즈니스 사용자와 데이터 사이언티스트, 예측 모델 개발자 모두가 활용할 수 있습니다. 텍스트 분석은 자연어 처리 과정이

Analytics
In-Sung Park 0
최신 AI 기술로 구현하는 고객 여정의 최적화 방법

최근 마케팅에서 가장 중요한 이슈는 AI와 디지털, 고객 여정입니다. 이 모든 것은 ‘개인화 마케팅을 통한 고객 경험의 최적화’라는 마케팅의 궁극적 목표와 맞닿아 있습니다. 고객 경험 최적화를 위한 SAS의 전략과 솔루션을 소개합니다. 고객 여정 최적화를 위한 SAS의 비전과 로드맵 SAS의 비즈니스 솔루션인 SAS Customer Intelligence 360는 전사적인 마케팅 플랫폼입니다. 2004년 SAS

Analytics | Programming Tips
Rick Wicklin 0
Simulate correlated variables by using the Iman-Conover transformation

Simulating univariate data is relatively easy. Simulating multivariate data is much harder. The main difficulty is to generate variables that have given univariate distributions but also are correlated with each other according to a specified correlation matrix. However, Iman and Conover (1982, "A distribution-free approach to inducing rank correlation among

Analytics
Bang-Bon Goo 0
하이브리드 머신러닝으로 텍스트 분석의 한계를 넘다

모든 비즈니스 영역으로 확대되는 텍스트 분석 그동안 소셜 미디어 분석에 국한되었던 텍스트 분석은 이제, 콜센터, 마케팅, 품질 영역으로 확장은 물론 최근 들어 전통적인 수작업 영역(발주처 요구사항 분석, AI기반 안전사고 예방 등)까지 확대하고 있습니다. 텍스트 분석을 하기 위해서는 텍스트와 함께, AI 기반의 NLP 머신러닝 엔진이 필수입니다. 이 엔진 내에서 문맥 기반의

Analytics
WooSeong Jeon 0
고객을 바로 알아야 비로소 보이는 Fraud

사기 위험 증가, 그리고 고객 바로 알기 무수히 많은 고객 거래에서 사기를 찾는 일은 모래 속에서 바늘을 찾는 것과 같다고들 말합니다. 디지털 가속화로 휴대폰 하나만 있으면 언제 어디서든 원하는 서비스를 이용하고 비용을 지불하는 편리한 시대를 살고 있는 지금, 기업과 기관은 고객에게 보다 빠르고 더 많은 편의를 제공하여 시장과 고객을 뺏기지

Analytics
Il-Hyoung Kwon 0
Forecasting 알고리즘, 미래를 변화시키다

포스트 코로나 시대의 불확실한 미래를 헤쳐나가기 위해서는 그 어느 때보다 예측력을 높여야 합니다. 예측 알고리즘을 사용하면 불확실성을 최소화하고, 정책이나 전략에 따른 변화를 보다 정확히 가늠하며 최적의 의사결정을 내릴 수 있습니다. SAS Visual Forecasting이 필요한 이유 Forecasting 알고리즘은 어떻게 미래를 변화시킬 수 있을까요? ARIMA와 같은 전통적인 단변량 시계열 알고리즘은 타깃(종속) 변수만을

Analytics | Learn SAS
Rick Wicklin 0
Rank-based scores and tied values

Many nonparametric statistical methods use the ranks of observations to compute distribution-free statistics. In SAS, two procedures that use ranks are PROC NPAR1WAY and PROC CORR. Whereas the SPEARMAN option in PROC CORR (which computes rank correlation) uses only the "raw" tied ranks, PROC NPAR1WAY uses transformations of the ranks,

Analytics
ByungWook Choi 0
제조 산업을 위한 성공적인 디지털 트랜스포메이션 전략

성공을 위한 3가지 필수 요소 시장조사기관인 IDC는 올해, 제조 분야에서 디지털 트랜스포메이션에 가장 많은 투자가 이뤄질 것으로 전망합니다. 구체적으로 디스크리트 제조 2,250억 달러, 프로세스 제조 1,250억 달러, 총 3500달러의 투자를 예상합니다. 디지털 트랜스포메이션을 성공적으로 수행하기 위해서는 3가지 요소가 필요합니다. ▶첫째, 사람. 모든 혁신의 주체는 사람입니다. 사람의 능력, 조직구조, 문화가 상당히

Learn SAS | Students & Educators
Julie Brown 0
Everyone can code with SAS® CodeSnaps

SAS® CodeSnaps is an easy, affordable, and engaging tool. All you need is one iPad, the free CodeSnaps app, one Sphero robot, and a problem to solve. Students work collaboratively in teams to generate the code required to move the Sphero; they build a program using the printable coding blocks, scan it with the app, and execute the program to check their logic. CodeSnaps is accessible and appropriate for all learners across all disciplines. Get creative and challenge your students to navigate an obstacle course, find members of a word family, explore the digestive system, or travel the Oregon Trail. Your imagination is your only limitation.

Analytics | SAS Events | Students & Educators
0
SAS Global Forum2021で世界を覗こう

SAS Global Forumオンデマンド配信の紹介  SAS Global Forumは、年に一度開催される世界最大級のアナリティクス・カンファレンスです。南北アメリカ、アジア太平洋地域、EMEAの3つの地域ごとにイベントは分かれており、アジア太平洋地域は5/19(水)~5/20(木)に開催されました。イベントの内容は2021年6月25日(金)までこちらより、オンデマンドで視聴可能です。  Forumでは、様々な分野のトップ企業、スピーカーの刺激的な講演を聞くだけでなく、トレーニングや技術セッションといった学習機会も提供されます。また優れたデータアナリティクスの成績・教育が認められた学生や教育者に対しては表彰が行われました。ここでは一人の受賞者のセッションを紹介します。 Do Americans trust scientific experts?  このセッションはタイトルにもあるように、医者・環境学者・栄養士など“科学に関連する専門家”に対するアメリカ人の不信について取り扱っています。この話題は幅広く活用が期待でき、多くの人々に関連する事柄であるという背景があり、今回の講演のテーマとして設定されています。  使用されたデータは、科学者に対する人々の全体的な意見や個人の科学にまつわる知識などを調査して収集されています。収集したデータを用いて、記述統計による考察やディシジョンツリーをはじめとしたモデルによる分類の結果から、次のようなフィードバックを共有しています。 各専門家に対する肯定的/否定的な意見の割合は、医者が最も肯定的な割合が高く、その中でも人々と対面する機会が多い開業医に対する肯定的な意見が多い。 人々の政治的傾向に基づいて専門家への信頼度に差が出ている 科学知識が前提にある人の方が専門家への信頼を示している  スピーカーはこの結果をもとに、ワクチン接種の促進が可能になるのではないかという活用例を話しています。それは市民に専門への信頼に関する質問に答えてもらい、信頼の低い地域の人々に対してワクチン情報について教育・説得することでワクチン接種を増やすという仕組みです。  またスピーカーは私たちと同じ大学の学生で、コロナ禍に抱える問題も絡ませたセッションになっており、私たちにとても身近な内容になっています。  繰り返しになりますが、SAS Global Forum2021はより優れたキャリアにつなげる大きなチャンスであり、各セッションの様子はオンデマンドで視聴可能です。ぜひ自らの成長のために登録、ご覧ください。

Advanced Analytics
Byoung-Jeong Choi 0
SAS AutoML이 주도하는 분석 인사이트

AutoML은 최근 몇 년간 가장 빠르게 진화하는 AI기술중 하나입니다. AutoML은 시티즌 데이터 사이언티스트는 물론 데이터 사이언티스트도 더 빨리 더 많은 모델을 구축하고, 모델의 정확도를 개선하여 보다 생산적인 과제에 집중할 수 있게 합니다. 이를 통해 기업은 조직 전반에 업무 효율성과 전문성을 강화할 수 있습니다. SAS AutoML 플랫폼의 핵심은 분석 라이프사이클 프로세스

1 30 31 32 33 34 256