Machine Learning

Get the latest machine learning algorithms and techniques

Analytics | Machine Learning
Thomas Keil 0
Künstliche Intelligenz 2018: Welcome to the Analytics Economy!

Jahreswechsel bieten sich für Bestandsaufnahmen an. Mit ein wenig Abstand betrachtet fällt mir auf, dass die Spezialisten-Themen „Analytics“, „Big Data“ und vor allem „künstliche Intelligenz“ (KI) längst im publizistischen Mainstream angekommen sind. Täglich erscheinen in allen möglichen Publikumszeitschriften neue Artikel, die zwischen Euphorie und Pessimismus jede Facette anbieten. Grund genug,

Advanced Analytics | Analytics | Artificial Intelligence | Internet of Things | Machine Learning
Oliver Schabenberger 0
Two tech trends shaping 2018 and beyond

Technology is changing rapidly: autonomous vehicles, connected devices, digital transformation, the Internet of Things (IoT), machine learning, artificial intelligence (AI), automation. The list goes on. And it has only begun. I am often asked, “What is next for SAS? What will the future of analytics look like in 20 years?”

Advanced Analytics | Analytics | Artificial Intelligence | Data Management | Machine Learning
Charlie Chase 0
Why do we rely on judgment when analytics outperforms it?

Wherever there is uncertainty there has got to be judgment, and wherever there is judgment there is an opportunity for human fallibility. Donald Redelmeirer, physician-researcher Over the holidays, I read a fascinating book titled The Undoing Project: A Friendship That Changed Our Mind by Michael Lewis (W.W. Norton & Company,

Data Management | Internet of Things | Machine Learning
Helmut Plinke 0
Was kommt eigentlich 2018 … in Sachen Datenmanagement?

Welche Veränderungen bringt 2018 im Datenmanagement? Ich habe Experten nach ihrer Meinung zu den Technologietrends 2018 gefragt und sie mit meinen eigenen Erwartungen verglichen. Herauskristallisiert haben sich fünf große Trends, die uns meiner Ansicht nach dieses Jahr im Datenmanagement begleiten: 1. Datenbewegung wird wichtiger Cloud-Anbieter haben bereits gezeigt, wie einfach

Advanced Analytics | Artificial Intelligence | Machine Learning
Jos van Dongen 0
Dutch Data Science, part 4: Rijkswaterstaat RWS

The fourth edition of the series brings me to Rijkswaterstaat, the Dutch government agency responsible for the main connecting infrastructure in the Netherlands (roads, bridges, waterways and water systems). I talked with Bas van Essen who’s responsible for RWS Datalab, the big data lab within Rijkswaterstaat (RWS). Company Overview RWS

Artificial Intelligence | Machine Learning
Makoto Unemi (畝見 真) 0
SAS Viyaを「無償」で「実データ」で「体感」してみよう!

2017年12月にSAS Viyaの最新版3.3がリリースされました。 これに伴い、皆様には、大幅に拡張されたSAS Viyaの機能を存分に体感いただくために今版から、皆様がお持ちの「実データ」でSAS Viyaベースのすべての製品を自由に触っていただけるようになりました。 ぜひ、ご利用ください! 利用手順に関しては、以下のブログをご覧ください。 SAS Viyaを体感してみよう! ~SAS Viya無償試用版利用ガイド~

Advanced Analytics | Analytics | Customer Intelligence | Machine Learning
Suneel Grover 0
SAS Customer Intelligence 360: The digital shapeshifter of recommendation systems [Part 1]

If you’ve ever used Amazon or Netflix, you’ve experienced the value of recommendation systems firsthand. These sophisticated systems identify recommendations autonomously for individual users based on past purchases and searches, as well as other behaviors. Customers get algorithmic recommendations on additional offerings that are intended to be relevant, valued, and

Advanced Analytics | Artificial Intelligence | Machine Learning
Ilknur Kaynar Kabul 0
Interpretability is crucial for trusting AI and machine learning

As machine learning takes its place in many recent advances in science and technology, the interpretability of machine learning models grows in importance. We are surrounded with applications powered by machine learning, and we’re personally affected by the decisions made by machines more and more every day. From the mundane

Analytics | Artificial Intelligence | Machine Learning
Bert Weemaes 0
Industry 4.0 - Boosting productivity with digital twin analytics

This article focusses on time-variant manufacturing processes, and how analytics can help boost their productivity. Many production lines relying on such processes are involuntarily operated using a suboptimal combination of input control settings most of the time. This weakens overall returns at facilities such as steel mills, mines, chemical and

Machine Learning | Programming Tips
Makoto Unemi (畝見 真) 0
SAS Viyaにディープラーニングが登場! さっそく画像分類してみた。

SAS Viyaがリニューアルされまして、ついにディープラーニングが登場しました! SAS ViyaのディープラーニングではオーソドックスなDeep Neural Network(DNN)から、画像認識で使われるConvolutional Neural Network(CNN、畳込みニューラルネットワーク)、連続値や自然言語処理で使われるRecurrent Neural Network(RNN、再帰的ニューラルネットワーク)まで利用可能になります。 ディープラーニングを使うことのメリットは、従来の機械学習やニューラルネットワークが苦手としている画像や文章を認識し、高い精度で分類や推論することが可能になります。 高い精度というのは、ディープラーニングのモデルによっては人間の目よりも正確に画像を分類することができるということです。 例えばコモンドールという犬種がありますが、この犬はモップのような毛並みをしていて、人間ではモップと見間違えることがあります。 これは犬? それともモップ? こういう人間だと見分けにくい画像に対しても、ディープラーニングであれば、人間よりも正確に犬かモップかを見分けることができるようになります。 というわけで、今回はSAS Viyaのディープラーニングを使って画像分類をしてみたいと思います。 ディープラーニングの仕組み 画像分類のディープラーニングではCNNを使います。 CNNは画像の特徴を探し出す特徴抽出層と特徴から画像を分類する判定層で構成されています。   特徴抽出層は主に畳込み層とプーリング層で構成されています。 畳込み層で入力画像に対し、ピクセルの特徴(横線の有無とか斜め線とか)を探し出し、プーリング層で重要なピクセルを残す、という役割分担です。 判定層は、特徴抽出層が見つけた特徴をもとに、画像の種類を分類します。 例えば犬と猫の分類であれば、特徴抽出層が入力画像から、面長で大きな鼻の特徴を見つけだし、犬と分類します。   または、丸っこい顔立ちと立った耳の特徴を見つけだし、猫と分類します。   SAS Viyaで画像を扱う SAS ViyaディープラーニングでCifar10をネタに画像分類をしてみたいと思います。 Cifar10は無償で公開されている画像分類のデータセットで、10種類の色付き画像60,000枚で構成されています。 各画像サイズは32×32で、色はRGBです。 10種類というのは飛行機(airplane)、自動車(automobile)、鳥(bird)、猫(cat)、鹿(deer)、犬(dog)、蛙(frog)、馬(horse)、船(ship)、トラック(truck)で、それぞれ6,000枚ずつ用意されています。 画像は総数60,000枚のうち、50,000枚がトレーニング用、10,000枚がテスト用です。   画像データは以下から入手することができます。 さて、Cifar10を使って画像分類をしてみます。言語はPython3を使います。 SAS Viyaで画像分類をする場合、まずは入手したデータをCASにアップロードする必要があります。 CASはCloud Analytics Servicesの略称で、インメモリの分散分析基盤であり、SAS Viyaの脳みそにあたる部分です。 SAS Viyaの分析は、ディープラーニング含めてすべてCASで処理されます。 CASではImage型のデータを扱うことができます。 Image型とは読んで字のごとくで、画像を画像フォーマットそのままのバイナリで扱えるということです。

Analytics | Data for Good | Machine Learning | SAS Events
Steve Bennett 0
How federal civilian agencies can improve outcomes with analytics

From national parks and healthcare to taxes and nutrition, federal civilian agencies feature an incredibly large and diverse set of missions. These agencies oversee almost every aspect of American life with an endless sea of projects, programs and general oversight. But, as Deloitte Consulting’s Mark Urbanczyk said during a recent

Artificial Intelligence | Fraud & Security Intelligence | Machine Learning
Patricia Spinner 0
Danger, danger Will Robinson: Modernizing risk mitigation systems with AI

How do you define artificial intelligence? Would you define it differently if it was your job to prevent fraud and financial crimes, where the risks are constantly shifting? In a recent meeting with banking executives responsible for fraud and financial crimes risk mitigation, Wayne Thompson, Manager of Data Science Technologies

1 5 6 7 8 9 13

Back to Top