The SAS Data Science Blog
Advanced analytics from SAS data scientistsSAS Technical Training Consultant Mary Kathryn Queen introduces you to SAS Data Studio's Suggestions feature.
Most model assessment metrics, such as Lift, AUC, KS, ASE, require the presence of the target/label to be in the data. This is always the case at the time of model training. But how can I ensure that the developed model can be applied to new data for prediction?
This post describes a fully automated validation pipeline for analytical models as part of an analytical platform, which has been set up recently as part of a customer project.
Let us now take a look at a well-known metaphor for test case development in the software industry. We are referring to the idea of the “test pyramid."
In total, there are four posts in this blog series, this is the first post describing some basic principles of the DevOps (or ModelOps) approach.
This blog is a part of a series on the Data Science Pilot Action Set. In this blog we review all nine actions in Python. Have you noticed the button bar in the upper right-hand corner of the SAS Visual Data Mining and Machine Learning Programming Guide? This button bar