Machine Learning

Get the latest machine learning algorithms and techniques

Analytics | Data for Good | Internet of Things | Machine Learning | SAS Events
Gloria Cabero 0
SAS Global Forum, inspiración para hacer lo extraordinario

+Las empresas de todo el mundo están cambiando radicalmente su manera de operar y de relacionarse con clientes y socios. Se encuentran en plena transformación digital y capitalizan tendencias clave para evolucionar, como la nube, el Internet de las Cosas, la inteligencia artificial y la analítica, entre otras. De igual

Advanced Analytics | Analytics | Artificial Intelligence | Data Visualization | Learn SAS | Machine Learning | Students & Educators
Markus Grau 0
Business Analytics: Real-World Use Cases für Universitäten und Hochschulen

In meiner Funktion als Academic Program Manager unterstütze ich Hochschulen in den Themengebieten künstliche Intelligenz (KI), Data Science und Business Analytics. Einer der am häufigsten geäußerten Wünsche ist, dass seitens SAS, Use-Cases zur Verfügung gestellt werden. Keine theoretischen Gebilde, sondern echte, reale Daten von Firmen mit einem handfesten Business-Problem, das

Internet of Things | Machine Learning
Charlie Chase 0
Is quick response forecasting a reality or just another buzzword?

“Quick response forecasting (QRF) techniques are forecasting processes that can incorporate information quickly enough to act upon by agile supply chains” explained Dr. Larry Lapide, in a recent Journal of Business Forecasting column. The concept of QRF is based on updating demand forecasts to reflect real and rapid changes in demand, both

Machine Learning
畝見 真 0
ディープラーニングの判断根拠

予測モデル生成において、従来は、人が考えてデータの中から特徴を抽出する必要がありましたが、ディープラーニングでは、この特徴を自動的に抽出して学習することが可能になっています。 半面、どのように特徴が抽出されているのかに関しては、基本的にはブラックボックスであり、説明責任が求められるような業務要件では、その分析結果を業務に活用することが難しい場合もあります。 しかし、近年ディープラーニングから出てきた結果の根拠=判断根拠を可視化する手法がいくつか考案されてきています。 関連情報サイト: https://qiita.com/icoxfog417/items/8689f943fd1225e24358 https://pair-code.github.io/saliency/ http://blog.brainpad.co.jp/entry/2017/07/10/163000 SAS Viyaでは、各種のディープラーニング(DNN, CNN, RNN)を用いた学習が可能ですが、今回はCNNを用いた画像認識において、判断根拠となり得る情報の出力に関してご紹介します。 この例は、複数のイルカの画像をCNNで学習し、対象の画像(写真)がイルカなのかどうかを判別するものです。 モデルを作成後、以下の画像をモデルに当てはめてスコアリングを実施。 この画像は「イルカ」だと判定されたのですが、その判断根拠の一つとして、以下のように、この画像のどの部分がより重要であると判断されているのかを可視化することが可能になっています。 【レイヤー1のfeature map】 【レイヤー18のfeature map】 SAS Viyaでは、モデルのスコアリング時のオプションとして、指定したレイヤ(層)の特徴マップ(feature map)を画像として指定ライブラリに出力することが可能です。 >> スコアリング用のアクション:”dlScore” の layerOut={出力先ライブラリとテーブル名} オプションと layers={出力対象レイヤ名} オプション >> 上図はライブラリに出力された画像(feature map)を表示したものです。

Analytics | Machine Learning
Thomas Keil 0
Künstliche Intelligenz braucht Interpretierbarkeit, Nachvollziehbarkeit und Kommunikation

Wahrscheinlich schreibt Richard David Precht gerade an einem Buch über künstliche Intelligenz – und es wäre wirklich nicht schlecht, wenn sich möglichst viele Menschen so genau wie möglich über dieses Thema informieren könnten, ohne selbst Spezialist sein zu müssen. Denn, das ist 2017 bereits klar geworden, künstliche Intelligenz betrifft uns

Analytics | Machine Learning
Thomas Keil 0
Künstliche Intelligenz 2018: Welcome to the Analytics Economy!

Jahreswechsel bieten sich für Bestandsaufnahmen an. Mit ein wenig Abstand betrachtet fällt mir auf, dass die Spezialisten-Themen „Analytics“, „Big Data“ und vor allem „künstliche Intelligenz“ (KI) längst im publizistischen Mainstream angekommen sind. Täglich erscheinen in allen möglichen Publikumszeitschriften neue Artikel, die zwischen Euphorie und Pessimismus jede Facette anbieten. Grund genug,

Advanced Analytics | Analytics | Artificial Intelligence | Internet of Things | Machine Learning
Oliver Schabenberger 0
Two tech trends shaping 2018 and beyond

Technology is changing rapidly: autonomous vehicles, connected devices, digital transformation, the Internet of Things (IoT), machine learning, artificial intelligence (AI), automation. The list goes on. And it has only begun. I am often asked, “What is next for SAS? What will the future of analytics look like in 20 years?”

Advanced Analytics | Analytics | Artificial Intelligence | Data Management | Machine Learning
Charlie Chase 0
Why do we rely on judgment when analytics outperforms it?

Wherever there is uncertainty there has got to be judgment, and wherever there is judgment there is an opportunity for human fallibility. Donald Redelmeirer, physician-researcher Over the holidays, I read a fascinating book titled The Undoing Project: A Friendship That Changed Our Mind by Michael Lewis (W.W. Norton & Company,

Data Management | Internet of Things | Machine Learning
Helmut Plinke 0
Was kommt eigentlich 2018 … in Sachen Datenmanagement?

Welche Veränderungen bringt 2018 im Datenmanagement? Ich habe Experten nach ihrer Meinung zu den Technologietrends 2018 gefragt und sie mit meinen eigenen Erwartungen verglichen. Herauskristallisiert haben sich fünf große Trends, die uns meiner Ansicht nach dieses Jahr im Datenmanagement begleiten: 1. Datenbewegung wird wichtiger Cloud-Anbieter haben bereits gezeigt, wie einfach

Advanced Analytics | Artificial Intelligence | Machine Learning
Jos van Dongen 0
Dutch Data Science, part 4: Rijkswaterstaat RWS

The fourth edition of the series brings me to Rijkswaterstaat, the Dutch government agency responsible for the main connecting infrastructure in the Netherlands (roads, bridges, waterways and water systems). I talked with Bas van Essen who’s responsible for RWS Datalab, the big data lab within Rijkswaterstaat (RWS). Company Overview RWS

1 2 3 4 8

Back to Top