Machine Learning

Get the latest machine learning algorithms and techniques

Advanced Analytics | Analytics | Machine Learning
SAS Viya:ビジュアルパイプラインで予測モデル生成(自動特徴量エンジニアリングテンプレート編)

ビジュアルパイプラインで予測モデル生成(テンプレート使用編)では、SAS ViyaのModel Studioを使用し、標準で実装されているパイプラインのテンプレートを使用して、予測モデルを自動生成する手順を紹介しました。 今回は、標準実装のテンプレートに含まれている、「自動特徴量エンジニアリングテンプレート」を紹介します。 「特徴」=入力=変数(独立変数、説明変数)であり、 特徴量エンジニアリングとは、予測モデルの精度を高めるために、学習用の生データに基づき、特徴を変換したり、抽出したり、選択したり、新たな特徴を作り出す行為です。 以下は、特徴量エンジニアリングの例です。 ・郵便番号などの高カーディナリティ名義変数のエンコーディング(数値化) ・間隔尺度の変数の正規化、ビニング、ログ変換 ・欠損パターンに基づく変換 ・オートエンコーダー、主成分分析(PCA)、t-SNE、特異値分解(SVD)などの次元削減 ・季節的な傾向を把握するために、日付変数を別々の変数に分解して曜日と月と年の新しい変数を作成 より良い「特徴」を作り出し、選択することで、予測モデルの精度が向上するだけでなく、モデルを単純化し、モデル解釈可能性を高めるのにも役立ちます。 しかし、従来、予測モデリングのプロセスにおいて、データサイエンティストは、その多くの時間を特徴量エンジニアリングに費やしてきました。しかも、特徴量エンジニアリングの良し悪しは、データサイエンティストのスキルに大きく依存してしまいます。 こうした課題に対処するために、SAS Viyaでは、自動特徴量エンジニアリングテンプレートを提供しています。このテンプレートを使用することで、特別なスキルを必要とせず、特徴量エンジニアリングにかける時間を短縮し、より精度の高い予測モデル生成が可能になります。 以下が、SAS ViyaのModel Studioに実装されている「自動特徴量エンジニアリングテンプレート」です。 このテンプレートは、大きく3つのステップで構成されています。 高カーディナリティ変数に対するエンコーディング(数値化) 最良変換、PCA / SVD、オートエンコーダーを使用して新たな特徴を作成 特徴エンジニアリング未/済みデータに基づく予測モデルの精度比較 ステップ1.高カーディナリティ変数に対するエンコーディング(数値化) このステップの最初のノードは、「SASコード高カーディナリティ」という名のSASコードノードです。 SASコードノードを使用することで、SASプログラムをパイプラインに組み込むことができます。 このノードを選択し、右側画面内でコードエディタ:「開く」をクリックすると、その内容を確認できます。 このSASコードノードでは、最初に、20〜1,000レベルのカーディナリティの高い変数(固有値が多すぎる名義変数)を識別します。minlevelsとmaxlevelsの値を更新することで、この範囲を簡単に変更することもできます。次に、数値変換(TRANSFORM = LEVELENCODE)を指定し、これらの変数に対してのみレベル(水準)エンコーディングを行います。実際に変換を行うためには、「データマイニングの前処理」にある「変換」ノードを実行する必要があるため、「変換」ノードが接続されています。 レベルエンコーディングでは、名義を数値に変換します。これは、カーディナリティの高い変数を扱う場合に特に便利です。これらの変数は、ほとんどの機械学習アルゴリズムにおいてコンピューティングリソースの負荷をあげてしまうことが多いからです。最初に名義変数のレベルをアルファベット順に並べ替え、各レベルに昇順に数字(1から始まる)を割り当てます。 ステップ2.最良変換、PCA / SVD、オートエンコーダーを使用して新たな特徴を作成 ステップ2では、以下の3つの異なる自動特徴量エンジニアリング手法が適用されます。 変換-最良(Best):このノードは、「データマイニングの前処理」にある「変換」ノードを使用して、すべての間隔変数に対して「最良(Best)」の変換を行います。この方法では、各間隔変数に対して、ランク付け基準(ターゲットとの相関など)に基づいて、単一変数の変換(逆変換、標準化、センタリング、ログ変換など)を比較し、最も高いランク付けを持つ変換を選択します。 特徴抽出- PCA:このノードは、「データマイニングの前処理」にある「特徴抽出」ノードを使用して、間隔入力変数に対する自動特徴抽出手法として「自動」を指定しています。「自動」では、間隔入力変数の総数が500以下の場合は、主成分分析(PCA)が適用され、それ以外の場合は、特異値分解(SVD)が適用されます。 特徴抽出-自動エンコーダ:このノードでは、オートエンコーダを用いて特徴抽出を行います。この手法では、特徴抽出にすべての入力変数(間隔と名義)を使用します。オートエンコーダーは、入力データを再構成するために使用できる特徴のセットを学習することを目的とした教師なし学習技術です。手短に言えば、ニューラルネットワークは、ターゲット(出力)ニューロンを入力ニューロンと等しく設定することによって訓練されるものです。 このノードでは、中間隠れ層が10に設定されているので、10個の新しい特徴が作成されます。 ステップ3.特徴エンジニアリング未/済みデータに基づく予測モデルの精度比較 最後のステップでは、勾配ブースティングを用いた5つの異なる予測モデルが生成されます。 ・高カーディナリティー変数のレベルエンコーディング+特徴抽出(PCA)を施したデータに基づくモデル ・高カーディナリティー変数のレベルエンコーディング+特徴抽出(オートエンコーダー)を施したデータに基づくモデル ・高カーディナリティー変数のレベルエンコーディング+変換-最良を施したデータに基づくモデル ・高カーディナリティー変数のレベルエンコーディングを施したデータに基づくモデル ・元のデータ(特徴量エンジアリングを施していない)に基づくモデル 5つのモデルを生成後、パフォーマンスを比較します。勾配ブースティングは、非常に効果的な教師あり学習アルゴリズムであり、予測精度の面で他のアルゴリズムより優れていることが多いため、使用しています。

Advanced Analytics | Analytics | Machine Learning
SAS Viya: ビジュアルパイプラインで予測モデル生成(テンプレート使用編)

ビジュアルパイプラインで予測モデル生成(基本編)では、SAS ViyaのModel Studioを使用し、パイプラインを一から作成し、予測モデルを生成する手順を紹介しました。 今回は、前回からの続きとして、予め用意されているパイプラインのテンプレートを使用した、モデル生成手順を紹介します。 パイプライン・テンプレートの選択と実行 実行結果(モデル精度)の確認 1.パイプライン・テンプレートの選択と実行 パイプラインの追加アイコンをクリックすると、 「パイプラインの新規作成」ダイアログが表示されます。 パイプラインの名前を入力し、「テンプレート」から「テンプレートの参照…」を選択すると、 標準で実装されているテンプレートのリストが表示されます。 この中から使用したいテンプレートを選択し、「OK」をクリックします。今回は、「分類尺度のターゲット変数の高度なテンプレート」を使用します。 さらに、「保存」をクリックすると、 選択したパイプラインの内容が表示されます。 このテンプレートでは、以下の7つのモデルを生成し、結果を比較することができます。 ・データに対する前処理(欠損値補完と変数選択)後に、ロジスティック回帰(ステップワイズ法)とニューラルネットワークでモデル生成 ・データに対する前処理(欠損値補完)後に、ロジスティック回帰(増加法)でモデル生成 ・データに対する前処理無しで、勾配ブースティング、フォレスト、ディシジョンツリーでモデル生成 ・上記6つのモデルのアンサンブルモデルの生成 ※テンプレートに使用されている機能ノードごとの詳細なオプション内容は右側画面内で確認でき、必要に応じて変更可能です。また、パイプライン内への機能ノードの追加・削除・変更などカスタマイズも可能です。 ※一から作成したパイプラインや、既存テンプレートをカスタマイズしたパイプラインを、その企業独自のテンプレートとして共有し、活用することができます。 ※一つのプロジェクト内に、複数のパイプラインを作成し、結果を比較することができます。 パイプラインの実行アイコンをクリックし、実行します。実行中の機能ノードは時計アイコンがクルクル回転し、正常に完了すると緑のチェックマークが表示されます。 2.実行結果(モデル精度)の確認 パイプラインの実行が完了したら、ビジュアルパイプラインで予測モデル生成(基本編)と同様に、「モデルの比較」ノードのスノーマンアイコンをクリックし、メニューから「結果」を選択し、このパイプラインの実行結果を確認することができます。 また、一つのプロジェクト内で、複数のパイプラインを作成している場合には、パイプライン間でモデル精度を比較し、プロジェクト内でのチャンピオンモデルを確認することができます。 画面上部の「パイプラインの比較」をクリックします。 パイプライン2の勾配ブースティングのモデルの精度が最も高い、チャンピオンモデルであることが示されています。 以上が、パイプラインのテンプレートを使用して、予測モデルを生成する際の手順です。 コーディングスキルを持たないビジネスユーザーでも、まず、学習用のデータを選択し、予測対象の項目を選択し、テンプレートを選んで実行するだけで、精度の高いの予測モデルを自動生成することができるということです。 ※ビジュアルパイプラインのテンプレートを使用したモデル生成は、SAS Viya特設サイトにある動画でもご覧いただけます。  

Advanced Analytics | Analytics | Machine Learning
SAS Viya: ビジュアルパイプラインで予測モデル生成(基本編)

AIプラットフォームであるSAS Viyaでは、SAS言語のみならず、PythonやR、Java、Luaなどの汎用プログラミング言語からViyaのAI&アナリティクスの機能を使用し、予測モデルを生成することができるようになっています。しかし、昨今、「AI民主化」の流れに沿って、予測モデル生成を必要としているのはデータサイエンティスト(以降:DS)だけではなく、業務部門のビジネスアナリストや一般のビジネスユーザーも必要としています。こうしたコーディングスキルを持たないビジネスユーザー向けに、SAS Viyaでは、GUI上でマウスの簡単操作だけで予測モデル生成を可能としています。 もちろん、DSの中にも、コーディングせずに、もっと簡単に精度の高い予測モデルを生成できる手段があれば活用したいと感じている人達もいます。 SAS Viyaでは、Model Studioを使用し、機械学習のモデル、時系列予測のモデル、テキストマイニングのモデルをGUIベースの簡単マウス操作で作成することができます。モデル生成プロセスをグラフィカルなフロー図として描き、実行するだけです。このフロー図のことを「パイプライン」と呼んでいます。 Model Studioで予測モデルを生成するには、大きく2通りの方法があります。 1つは、マウスの簡単ドラッグ操作でパイプラインを一から作成する方法と、もう一つは、予め用意されているパイプラインのテンプレートを使用する方法です。 まずは、パイプラインを一から作成する際の基本的な手順を紹介します。 プロジェクトの新規作成と学習用のデータソース選択 パイプラインの作成と実行 実行結果(モデル精度)の確認 1.プロジェクトの新規作成と学習用のデータソース選択 SAS Viyaの統合GUIのホームページのメニューから「モデルの作成」を選択すると、 Model Studioの画面が表示されます。 「プロジェクトの新規作成」をクリックします。 「プロジェクトの新規作成」画面内で、プロジェクトの名前を入力し、モデルの種類(データマイニングと機械学習 / テキスト分析 / 予測)を選択し、学習用のデータソースを選択します。今回は、「データマイニングと機械学習」を選び、ローンの審査モデルを作成します。HMEQJというデータソースは、顧客ごとに1行の横持ち形式のデータです。 「保存」をクリックすると、ローン審査モデルプロジェクトが作成され、選択したデータソースの変数リストが表示されます。 予測対象の項目(ターゲット変数)を指定します。変数名:BAD(ラベル名:延滞フラグ)を選択し、右画面内で、役割に「ターゲット」を選択します。 延滞フラグには、過去に延滞の実績があればフラグに“1”が、無ければ“0”が設定されています。 2.パイプラインの作成と実行 予測対象の項目を指定後、画面上部にある「パイプライン」をクリックします。 パイプラインには「データ」ノードのみが表示されています。左端の機能ノードアイコンをクリックすると、 パイプラインに追加可能な機能ノードのリストが表示されます。 今回は、欠損値補完を行った上で、勾配ブースティングとランダムフォレストでモデルを生成してみましょう。まず、データに対する前処理として欠損値補完を行います。 「データマイニングの前処理」内にある「補完」を「データ」ノード上にドラッグすると、 「データ」ノードの下に「補完」ノードが追加されます。 同様の手順で、「教師あり学習」内にある「勾配ブースティング」を「補完」ノード上へドラッグすると、「補完」ノードの下に「勾配ブースティング」ノードが追加されます。(同時に「モデルの比較」ノードが自動的に追加されます) このようにドラッグ操作でノードを追加する以外に、パイプライン上のメニューからノードを追加することもできます。 「補完」ノードの右端にある、3つのドットが縦に並んでいる(スノーマン)アイコンをクリックし、「下に追加」>「教師あり学習」>「フォレスト」の順に選択すると、 「補完」ノードの下に、「フォレスト」ノードが追加されます。 機能ノードごとの詳細なオプションの設定は、右側画面内で行います。 パイプラインが完成したら、パイプラインの実行アイコンをクリックし、実行します。実行中の機能ノードは時計アイコンがクルクル回転し、正常に完了すると緑のチェックマークが表示されます。 3.実行結果(モデル精度)の確認 パイプラインの実行が完了したら、「モデルの比較」ノードのスノーマンアイコンをクリックし、メニュー から「結果」を選択します。 モデルの比較結果が表示されます。今回は勾配ブースティングのモデルの精度の方が高い=チャンピオンであると判定されています。 「アセスメント」タブ内では、リフトやROCの情報などを確認することができます。 以上が、ビジュアルパイプラインで予測モデルを一から生成する際の基本的な手順です。 ※ビジュアルパイプラインによるモデル生成(基本)は、SAS Viya特設サイトの「機械学習」トピック内にある動画でもご覧いただけます。

Analytics | Artificial Intelligence | Machine Learning
Aneshan Ramaloo 0
How analytically driven decisions can help retailers get the right size to the customer

In my previous blog post, I talked about how both retailers and consumers can benefit from applications of artificial intelligence and discussed some compelling use cases. I would like to take this post a step further and delve into a particular bugbear of mine: the struggle to find the right size. In

Analytics | Data Visualization | Machine Learning | SAS Events
Gregor Herrmann 0
Aus der Praxis: 5 Erkenntnisse zum Thema Data Mining und Machine Learning

Beim diesjährigen SAS Forum Deutschland in Bonn boten Sascha Schubert und ich einige Hands-on-Sessions zu Data Science und Analytics an. Nichts Neues, denken Sie wahrscheinlich. Aber mir sind einige Veränderungen zu vorherigen Events aufgefallen, die meiner Ansicht nach auf einen größeren Umbruch in der analytischen Landschaft verweisen. Hier also meine

Advanced Analytics | Artificial Intelligence | Machine Learning
Andreas Becks 0
A reality check on artificial intelligence: Potential, limits and consequences

Gartner expects artificial intelligence (AI) to create 2 million new jobs by 2025. AI and machine learning are already an important part of business processes and business areas in many companies and organisations, making everyday work easier, optimising interactions with customers, reliably predicting the failure of machines or supporting the

Advanced Analytics | Analytics | Customer Intelligence | Data Visualization | Machine Learning
Suneel Grover 0
SAS Customer Intelligence 360: Factorization machines, visual analytics, and personalized marketing

In a previous posting, SAS Customer Intelligence 360 was highlighted in the context of delivering relevant product, service, and content recommendations using automated machine learning within digital experiences. Shifting gears, SAS recognizes there are different user segments for our platform. This post will focus on building custom analytical recommendation models

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning
「Pipefitter」の応用 ~CNN(特徴抽出器)+機械学習(分類器)でCNNの欠点を補完

前回は、SASの「Pipefitter」の基本的な使用方法を紹介しました。続く今回は、基本内容を踏まえ、ひとつの応用例を紹介します。 SAS Viyaのディープラーニング手法の一つであるCNNを「特徴抽出器」として、決定木、勾配ブースティングなどを「分類器」として使用することで、データ数が多くないと精度が出ないCNNの欠点を、データ数が少なくても精度が出る「従来の機械学習手法」で補強するという方法が、画像解析の分野でも応用されています。 以下は、SAS Viyaに搭載のディープラーニング(CNN)で、ImageNetのデータを学習させ、そのモデルに以下の複数のイルカとキリンの画像をテストデータとして当てはめたモデルのpooling層で出力した特徴空間に決定木をかけている例です。 In [17]: te_img.show(8,4) 以下はCNNの構造の定義です。 Build a simple CNN model   In [18]: from dlpy import Model, Sequential from dlpy.layers import * from dlpy.applications import *   In [19]: model1 = Sequential(sess, model_table='Simple_CNN')   Input Layer   In [20]: model1.add(InputLayer(3, 224, 224, offsets=tr_img.channel_means))   NOTE: Input

Fraud & Security Intelligence | Machine Learning
Magdalene Ruhnau 0
Fraud Investigation – oder die Wechselwirkung von Mensch und Maschine

Die Digitalisierung bringt enorme Potenziale für Unternehmen: individualisierte Kundenansprache, spezifische bedürfnisorientierte Angebote, bessere Steuerbarkeit der Kundeninteraktion – all dies dient letztlich der Umsatzsteigerung und der Befriedigung der Shareholder. Doch es sind nicht nur Unternehmen, die die Herausforderung der Digitalisierung von Prozessen und Produkten annehmen und ihren Profit daraus schlagen, sondern

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning
機械学習のパイプラインを簡素化するPython向けパッケージ「Pipefitter」

SASでは、Python向けパッケージ/ライブラリとして、機械学習のパイプラインの実装を簡素化する「Pipefitter」を提供しています。 SASの「Pipefitter」パッケージは、SAS Viyaまたは、SAS v9の反復可能なワークフローの一つの段階として、データ変換とモデルフィッティング向けパイプラインを開発するためのPython APIを提供します。 このパッケージを使用すると、SASでデータを操作して、次のような処理を実装できます: ・欠損値補完 ・デシジョンツリー、ニューラルネットワーク、およびその他の機械学習テクニックを使用したパラメータ推定値の適合 ・ハイパーパラメータチューニングを使用したモデル選択の高速化 ・スコアリングとモデル評価 「Pipefitter」のもう一つの重要な特徴は、SASが提供する他の2つのPythonパッケージの能力に基づいていることです。 SWAT: SAS Viyaプラットフォームのインメモリー分析エンジンであるSAS Cloud Analytic Services(CAS)を活用し様々なデータ操作や分析を可能にするPython向けパッケージ SASPy: SAS9.4の機能を活用し、分析、データ操作、および視覚化を行うためのPython向けパッケージ ロジスティック回帰でのパラメータ推定などのパイプライン処理は、SASPyを介してSAS 9で、SWATを介してCASで同じように実行されるように設計されています。 以下は、タイタニック号の乗船者データに基づくパイプラインの例です。 まず、KaggleのサイトからPandas DataFrameにデータをダウンロードします。 In [1]: import pandas as pd In [2]: train = pd.read_csv('http://s3.amazonaws.com/assets.datacamp.com/course/Kaggle/train.csv')   In [3]: train.head() Out[3]: PassengerId Survived Pclass 0 1 0 3 1 2 1

Analytics | Customer Intelligence | Internet of Things | Machine Learning
Max Ardigò 0
Machine learning to (re)learn about the consumer's genome

An interview with Gaetano Giannetto, CEO of Epipoli/Groupalia Transparency and quality of algorithms will form the basis of a new alliance and a new balance between companies and their customers. “Data intelligence becomes a competitive advantage only if you’re able to use it,” according to Gaetano Giannetto, CEO of Epipoli,

Advanced Analytics | Internet of Things | Machine Learning
Adam Goldsmith 0
Steak & chips - how IoT and machine learning will disrupt risk in Animal Insurance

On the face of it, a partnership between the Internet of Things (IoT) and animals is not an obvious one. However, a number of trials and larger-scale implementations of IoT use with household pets and in farming are showing that connected ’Smudge’ and ‘Daisy’ can provide real benefits. This should

Advanced Analytics | Artificial Intelligence | Machine Learning
Mark Bakker 0
From concept to value — the machine learning curve

Advanced analytics is an important part of artificial intelligence (AI). Machine learning, or the ability of computers to learn from data, rather than through programming rules, means that more complex problems can be addressed than would otherwise be possible. It is significantly easier to supply lots of data and examples

Analytics | Artificial Intelligence | Machine Learning
Charlie Chase 0
Will artificial intelligence replace humans?

We have entered the “second machine age.” The first machine age began with the industrial revolution, which was driven primarily by technology innovation. The ability to generate massive amounts of mechanical power made humans more productive. Where the steam engine started the industrial revolution, the second machine age has taken

Analytics | Fraud & Security Intelligence | Machine Learning
Shaun Barry 0
Machine Learning predicts victory for Spain. Fraud fighters should pay attention!

“Machine Learning” is a trendy term being kicked around (pun intended) by fraud fighters around the world. In fact, Machine Learning is such a popular term that it is becoming a staple in buzzword bingo games. Here’s a little secret about machine learning… many of the people who talk about

Advanced Analytics | Artificial Intelligence | Machine Learning
Ilknur Kaynar Kabul 0
Interpret model predictions with partial dependence and individual conditional expectation plots

Continuing our series on model interpretability, this post explains two methods for plotting variables that can give insight into how a model is working. Assessing a model`s accuracy usually is not enough for a data scientist who wants to know more about how a model is working. Often data scientists

Advanced Analytics | Artificial Intelligence | Machine Learning
Yue Qi 0
Recurrent neural networks: An essential tool for machine learning

Sequence models, especially recurrent neural network (RNN) and similar variants, have gained tremendous popularity over the last few years because of their unparalleled ability to handle unstructured sequential data. The reason these models are called “recurrent” is that they work with data that occurs in a sequence, such as text

Machine Learning
SAS Viya:ディープラーニング&画像処理用Python API向けパッケージ:DLPy

SASでは、従来からSAS Viyaの機能をPythonなど各種汎用プログラミング言語から利用するためのパッケージであるSWATを提供していました。 これに加え、よりハイレベルなPython向けAPIパッケージであるDLPyの提供も開始され、PythonからViyaの機能をより効率的に活用することが可能となっています。 ※DLPyの詳細に関しては以下サイトをご覧ください。 https://github.com/sassoftware/python-dlpy DLPyとは DLPyの機能(一部抜粋) 1.DLPyとは DLPyは、Viya3.3以降のディープラーニングと画像処理(image action set)のために作成された、Python API向けハイレベルパッケージです。DLPyではKerasに似たAPIを提供し、ディープラーニングと画像処理のコーディングの効率化が図られています。既存のKerasのコードをほんの少し書き換えるだけで、SAS Viya上でその処理を実行させることも可能になります。 例えば、以下はCNNの層の定義例です。Kerasに酷似していることがわかります。 DLPyでサポートしているレイヤは、InputLayer, Conv2d, Pooling, Dense, Recurrent, BN, Res, Proj, OutputLayer、です。 以下は学習時の記述例です。 2.DLPyの機能(一部抜粋) 複数のイルカとキリンの画像をCNNによって学習し、そのモデルにテスト画像を当てはめて予測する内容を例に、DLPyの機能(一部抜粋)を紹介します。 2-1.メジャーなディープラーニング・ネットワークの実装 DLPyでは、事前に構築された以下のディープラーニングモデルを提供しています。 VGG11/13/16/19、 ResNet34/50/101/152、 wide_resnet、 dense_net また、以下のモデルでは、ImageNetのデータを使用した事前学習済みのweightsも提供(このweightsは転移学習によって独自のタスクに利用可能)しています。 VGG16、VGG19、ResNet50、ResNet101、ResNet152 以下は、ResNet50の事前学習済みのweightsを転移している例です。 2-2.CNNの判断根拠情報 heat_map_analysis()メソッドを使用し、画像の何処に着目したのかをカラフルなヒートマップとして出力し、確認することができます。 また、get_feature_maps()メソッドを使用し、CNNの各層の特徴マップ(feature map)を取得し、feature_maps.display()メソッドを使用し、取得されたfeature mapの層を指定して表示し、確認することもできます。 以下は、レイヤー1のfeature mapの出力結果です。 以下は、レイヤー18のfeature mapの出力結果です。 2-3.ディープラーニング&画像処理関連タスク支援機能 2-3-1.resize()メソッド:画像データのリサイズ 2-3-2.as_patches()メソッド:画像データ拡張(元画像からパッチを生成) 2-3-3.two_way_split()メソッド:データ分割(学習、テスト) 2-3-4.plot_network()メソッド:定義したディープラーニングの層(ネットワーク)の構造をグラフィカルな図として描画 2-3-5.plot_training_history()メソッド:反復学習の履歴表示

1 2 3 4 10

Back to Top