Machine Learning

Get the latest machine learning algorithms and techniques

Machine Learning
SAS Viya: ディープラーニングと機械学習の判断根拠情報

前回の「ディープラーニングの判断根拠」ブログでは、PythonからSAS Viyaの機能を活用するためのパッケージであるSWATを使用した例を説明しましたが、今回は、以下2点に関してご紹介します。 SAS ViyaのよりハイレベルなPython APIであるDLPyを使用した画像認識モデルの判断根拠情報 機械学習の判断根拠情報 1.SAS ViyaのよりハイレベルなPython APIであるDLPyを使用した画像認識モデルの判断根拠情報 この例では、複数のイルカとキリンの画像をSAS Viyaのディープラーニング(CNN)で学習させ、そのモデルに以下の画像を当てはめて、これがイルカなのか否かを判別するものです。 実際、この画像はイルカであると判定されたんですが。 SAS Viyaでは、その判断根拠となり得る情報の一つとして、入力画像のどこに着目したのかを以下の通り出力し、確認できるようになっています。 DLPyでは、get_feature_maps()メソッドでfeature mapを取得し、feature_map.display()で指定したレイヤーの内容を表示することができます。 以下は、レイヤー1のfeature mapです。 以下は、レイヤー18のfeature mapです。 白色の濃淡で、判別に影響を与えている箇所を確認することができます。 さらに、SAS Viyaでは、画像認識モデルの判断根拠情報を可視化する手法の一つである、Grad-CAMと同様に、画像の何処に着目したのかを、カラフルなヒートマップとして出力し、確認することもできるようになっています。 しかも、heat_map_analysis()メソッドを使用して、以下の通り、たった1行書くだけでです。 青、緑、赤の濃淡で、判別に影響を与えている箇所を確認することができます。 DLPyの詳細に関しては、以下をご覧ください。 https://github.com/sassoftware/python-dlpy 2.機械学習の判断根拠情報 もちろんディープラーニングだけではなく、従来からの機械学習のモデルによって導き出された予測や判断に関しても、それがなぜ正しいと言えるのか、具体的に言えば、なぜAさんはこの商品を買ってくれそうだと判断されたのか、なぜこの取引データは疑わしいと判断されたのか、を説明する必要性があるわけです。特に説明責任が求められるような業務要件においては、 ということでSAS Viyaの次期版には機械学習の判断根拠情報、モデル内容を説明するための機能が実装される予定です。 まず、影響度が最も高い変数は、という問いに対しては、従来からの変数の重要度で確認することができます。これをさらに一段掘り下げたものが、Partial Dependence (PD)です。 日本語では「部分従属」と言いますが。重要度の高い変数は、予測に対して、具体的にはどのように作用しているのかを知ることができます。 そしてこのPDを元にさらに一段掘り下げたものが、Individual Conditional Expectation (ICE)になります。 また、これらとは別に、なぜその予測結果に至ったのかを説明するテクニックとしてLocal Interpretable Model-agnostic Explanations (LIME)を活用することができます。 SAS Viyaベースの製品であるSAS Visual Data Mining and

Analytics | Artificial Intelligence | Data for Good | Machine Learning
Analytics recognizes familiar faces among the vulnerable in society

Lately, the media has again been focusing on the debate about how we can do more for society's vulnerable groups, including children. This is an important debate and an area that we at SAS already have much experience with: when you apply analytics to the right data, something important happens.

Artificial Intelligence | Data Management | Machine Learning
Roger Thomas 0
Magic vs monetization: AI tips for manufacturing executives

Remember the military computer Joshua from the 1983 Matthew Broderick movie WarGames? Joshua learned how to “play a game” by competing against other computers, got confused about reality, and nearly started WWIII. As depicted in that movie, Joshua isn’t all that different from Google’s DeepMind, which became a superhuman chess

Advanced Analytics | Machine Learning
Lasse Skydstofte 0
Minority Report risk-based monitoring: Find the hidden potential

Most of us have probably seen Steven Spielberg's 2002 sci-fi movie Minority Report, starring Tom Cruise. In an “absurd” future society, a special police unit hunts future criminals before they commit their crimes and the illegal activity takes place. The police use sci-fi tools, such as “pre-visualisation,” to stop the lawbreakers

Analytics | Artificial Intelligence | Machine Learning
Mauricio González 0
Analítica, automatización e inteligencia impulsan la modernización del sector salud

Recientemente, el Instituto Mexicano del Seguro Social (IMSS) llevó a cabo la segunda edición de las Olimpiadas de la Innovación, evento en el que se reunieron las autoridades sanitarias, prestadores de servicios y empresas de tecnología para conocer los avances que hacen posible prestar una atención segura, efectiva, oportuna y

Analytics | Artificial Intelligence | Fraud & Security Intelligence | Machine Learning
Héctor Cobo 0
SAS Global Forum: Los datos se transforman en inteligencia

La fortaleza que tiene la analítica ahora es la revolución de las tecnologías como la inteligencia artificial (IA) y el aprendizaje automático. Esta amalgama de innovaciones le da a las empresas, de todas las industrias, la oportunidad de llevar a cabo las percepciones que obtienen de sus datos a una

Analytics | Artificial Intelligence | Customer Intelligence | Machine Learning
John Hawkins 0
Energy and electricity, market disruption and new dynamics

There is general agreement that the electricity and energy market is changing in a wide variety of ways. There is, however, less agreement on the likely effects of these changes. This makes it extremely hard for energy companies to know precisely where to target investment, but there are ways of

Analytics | Artificial Intelligence | Machine Learning
Andreas Becks 0
Künstliche Intelligenz im Reality-Check: Potenziale, Grenzen, organisatorische und gesellschaftliche Konsequenzen

Gartner geht davon aus, dass dank künstlicher Intelligenz (KI) bis 2025 zwei Millionen neue Arbeitsplätze geschaffen werden. KI und Machine Learning sind in vielen Unternehmen bereits heute wichtiger Bestandteil von Geschäftsprozessen und Unternehmensbereichen. Sie erleichtern den Arbeitsalltag, optimieren die Interaktion mit Kunden, sagen den Ausfall einer Maschine zuverlässig vorher oder

Analytics | Artificial Intelligence | Internet of Things | Machine Learning
Mauricio González 0
Transformemos México, la analítica al servicio de gobiernos y ciudadanos

México se encuentra inmerso en la mayor transformación de su historia. Sin importar la inclinación política del gobierno en el poder, las instituciones clave para el desarrollo del país –gracias a su autonomía- innovan a fin de proveer mejores servicios a la ciudadanía y elevar la transparencia de sus operaciones.

Analytics | Data for Good | Internet of Things | Machine Learning | SAS Events
Gloria Cabero 0
SAS Global Forum, inspiración para hacer lo extraordinario

+Las empresas de todo el mundo están cambiando radicalmente su manera de operar y de relacionarse con clientes y socios. Se encuentran en plena transformación digital y capitalizan tendencias clave para evolucionar, como la nube, el Internet de las Cosas, la inteligencia artificial y la analítica, entre otras. De igual

Advanced Analytics | Analytics | Artificial Intelligence | Data Visualization | Learn SAS | Machine Learning | Students & Educators
Markus Grau 0
Business Analytics: Real-World Use Cases für Universitäten und Hochschulen

In meiner Funktion als Academic Program Manager unterstütze ich Hochschulen in den Themengebieten künstliche Intelligenz (KI), Data Science und Business Analytics. Einer der am häufigsten geäußerten Wünsche ist, dass seitens SAS, Use-Cases zur Verfügung gestellt werden. Keine theoretischen Gebilde, sondern echte, reale Daten von Firmen mit einem handfesten Business-Problem, das

Internet of Things | Machine Learning
Charlie Chase 0
Is quick response forecasting a reality or just another buzzword?

“Quick response forecasting (QRF) techniques are forecasting processes that can incorporate information quickly enough to act upon by agile supply chains” explained Dr. Larry Lapide, in a recent Journal of Business Forecasting column. The concept of QRF is based on updating demand forecasts to reflect real and rapid changes in demand, both

Machine Learning
Makoto Unemi (畝見 真) 0
ディープラーニングの判断根拠

予測モデル生成において、従来は、人が考えてデータの中から特徴を抽出する必要がありましたが、ディープラーニングでは、この特徴を自動的に抽出して学習することが可能になっています。 半面、どのように特徴が抽出されているのかに関しては、基本的にはブラックボックスであり、説明責任が求められるような業務要件では、その分析結果を業務に活用することが難しい場合もあります。 しかし、近年ディープラーニングから出てきた結果の根拠=判断根拠を可視化する手法がいくつか考案されてきています。 関連情報サイト: https://qiita.com/icoxfog417/items/8689f943fd1225e24358 https://pair-code.github.io/saliency/ http://blog.brainpad.co.jp/entry/2017/07/10/163000 SAS Viyaでは、各種のディープラーニング(DNN, CNN, RNN)を用いた学習が可能ですが、今回はCNNを用いた画像認識において、判断根拠となり得る情報の出力に関してご紹介します。 この例は、複数のイルカの画像をCNNで学習し、対象の画像(写真)がイルカなのかどうかを判別するものです。 モデルを作成後、以下の画像をモデルに当てはめてスコアリングを実施。 この画像は「イルカ」だと判定されたのですが、その判断根拠の一つとして、以下のように、この画像のどの部分がより重要であると判断されているのかを可視化することが可能になっています。 【レイヤー1のfeature map】 【レイヤー18のfeature map】 SAS Viyaでは、モデルのスコアリング時のオプションとして、指定したレイヤ(層)の特徴マップ(feature map)を画像として指定ライブラリに出力することが可能です。 >> スコアリング用のアクション:”dlScore” の layerOut={出力先ライブラリとテーブル名} オプションと layers={出力対象レイヤ名} オプション >> 上図はライブラリに出力された画像(feature map)を表示したものです。

1 2 3 4 5 10

Back to Top