In the competitive and highly regulated insurance industry, it’s easy to see why firms are hungry to unlock the value of their data. From tackling claims inflation and fraud to developing innovative new products and pricing strategies, they know that being able to make sense of this data quickly is
Tag: machine-learning
Quando a pandemia do COVID-19 atingiu a Indonésia, bloqueios e restrições de atividade fecharam grande parte do comércio, ameaçando o sustento de milhões de pessoas. Isso porque o país possui mais de 64 milhões de micro, pequenas e médias empresas (MPMEs), responsáveis por empregar 97% da força de trabalho do
Estudos indicam que, ao longo dos últimos anos, aumentaram os casos de propagação de discursos de ódio e de notícias falsas. Especialmente no ano de 2022 há uma preocupação muito grande quanto à utilização desses recursos ilegítimos para finalidades eleitorais. Técnicas analíticas podem ser empregadas para estimular campanhas eleitorais que
The IEEE Visual Analytics Science and Technology (VAST) Challenge provides a great opportunity to validate our software against real-world scenarios using complex data sets. Not only do we learn from these projects, but we also send feedback to our development teams to further improve product capabilities for customers.
Let's create a Multi-stage Computer Vision model to detect objects on high-resolution imagery taken from an aerial view. The goal is to locate a dog and determine if he is wearing a scarf or not and what color the scarf is.
Customer acquisition and retention primarily fall on sales and marketing teams. But every department within an insurance company has a role to play in these activities. Claims handling is a great example. Any insurer's performance at this emotionally charged time is their litmus test. It can determine whether customers renew
Para los defraudadores y blanqueadores de fondos, el lavado de dinero es una mina de oro altamente redituable. Se calcula que entre el 2% y el 5% del producto interno bruto (PIB) global es lavado, lo que representa casi $3,000 millones de dólares (mdd) de fondos ilícitos que se fluyen
Anyone in the insurance industry knows that fraudsters are becoming more sophisticated and their crimes more difficult to identify. Insurance fraud in the UK costs an estimated £3 billion per year – but only around a third of that is detected. Whilst opportunistic fraud poses a problem to the industry and
This year we had the pleasure to attend the 42nd International Symposium on Forecasting in Oxford, UK. SAS participants traveled from across the globe. They presented their research, discussed their ideas, and learnt from some of the most reputable names in the forecasting space. The presentations were captivating and the
As promised in this latest blog about the Gartner Data & Analytics Summit in London, here’s an update from the second day at the SAS booth. To make a long story short, each day the SAS booth team posed a question to attendees visiting the booth. They could submit three
Toc, toc, toc. En algún lugar de Berlín a comienzos del siglo XX, tras esos pequeños tres golpes, se podía observar inconfundibles caras de asombro entre los periodistas y curiosos. En cambio, Wilhelm Von Osten reflejaba en su rostro algo más: felicidad, realización y por qué no, el disfrute de
La tecnología o la experiencia de cliente son algunos de los factores que más peso están adquiriendo en la evolución que vive el sector Seguros. Así, en los últimos años estamos observando un interés cada vez mayor en la ciencia de datos y aplicaciones de machine learning de las compañías
If you are an Enterprise Miner user, do not miss the opportunity to try out Model Studio in SAS Viya. I am sure you will love it!
En los últimos años estamos asistiendo a una profunda transformación del sector Seguros, impulsada fundamentalmente por la tecnología. Gracias a ella, las organizaciones ya disponen de información de gran valor que les permite adoptar un enfoque mucho más centrado en el cliente e incluso anticiparse a sus necesidades. Pero para
2022 será un año especial y sui géneris en muchos sentidos. Llega en medio de una realidad muy distinta a la que vivíamos al inicio de 2020, en la que la gente y las empresas han tenido que aprender a ser resilientes y adaptarse rápidamente a nuevos escenarios. En el
1회. 도입 목적과 범위, AML Compliance Analytics Maturity Model 자금세탁 방지 의무가 있는 대부분의 금융 기관과 기업은 자금세탁 방지와 관련된 컴플라이언스 업무 수행을 위해 막대한 인력, 시간, 비용, 노력을 투자하고 있습니다. 자금 세탁 방지 컴플라이언스는 FATF가 설립된 1989년 이후 자금세탁 방지(AML;Anti-Money Laundering), 테러자금조달 방지(CFT; Countering the Financing of Terrorism), 대량살상무기
La analítica, la inteligencia artificial, el machine learning y todas las nuevas ciencias encaminadas a aprovechar mejor los millones de datos que hay en la actualidad tienen un gran impacto en el mundo -y lo tendrán aún más- en la medida en que incidan directamente en el progreso de la
If you are thinking that nobody in their right mind would implement a Calculator API Service with a machine learning model, then yes, you’re probably right. But considering curiosity is in my DNA, it sometimes works this way and machine learning is fun. I have challenged myself to do it,
Vitor Vicente, head de vendas para telecom e varejo do SAS, e Eduardo Yamashita, diretor de operações do Ecossistema Gouvêa, abrem o SAS Retail Summit Brasil falando sobre as tendências para o setor de varejo. Vicente explica que a visão do SAS permeia a estratégia da digitalização em três grandes
Com as grandes mudanças provocadas pela crescente digitalização durante a pandemia, os players da indústria de telecomunicações que buscam se reinventar recorrem a análises avançadas para se adaptar a um ambiente de negócios dinâmico e encontrar novas fontes de receita. As operadoras conseguiram responder adequadamente ao aumento substancial das necessidades
This article was co-written by Jane Howell, IoT Product Marketing Leader at SAS. Check out her blog profile for more information. As artificial intelligence comes of age and data continues to disrupt traditional industry boundaries, the need for real-time analytics is escalating as organizations fight to keep their competitive edge.
Technological advancements in connectivity and global positioning systems (GPS) have led to increased data tracking and related business use cases to analyze such movements. Whether analyzing a vehicle, an animal or a population's movements - each use case requires analyzing underlying spatial information. Global challenges such as virus outbreaks, deforestation
SAS and Microsoft are working tirelessly to improve offerings and connectivity between SAS Viya and Microsoft Azure environments across industries.
When people think about sports, many things may come to mind: Screaming fans, the intensity of the game and maybe even the food. Data doesn’t usually make the list. But what people may not realize is that data is behind everything people love about sports. It can help determine how
How do you convince decision makers in your enterprise to give a machine learning (ML) project the green light? You might be super excited about machine learning – as many of us are – and might think that this stuff should basically sell itself! The value proposition can seem totally
In my new book, I explain how segmentation and clustering can be accomplished in three ways: coding in SAS, point-and-click in SAS Visual Statistics, and point-and-click in SAS Visual Data Mining and Machine Learning using SAS Model Studio. These three analytical tools allow you to do many diverse types of
Las empresas mexicanas han alcanzado, sin duda, un importante nivel de madurez en lo que se refiere a la adopción de tecnologías analíticas. Reconocen cada vez más la importancia de aprovechar la analítica, junto con la inteligencia artificial (IA) y el machine learning (ML), para automatizar procesos, lograr mayor agilidad
"Wem die Daten gehören, ist die falsche Frage. Wer die Daten zu welchem Zweck nutzen darf, wäre doch richtiger."
최근 화두가 되는 빅데이터와 머신 러닝은 예측 모델의 성능을 올리기 위한 방안으로 시작된 것입니다. SAS VDMML(Visual Data Mining and Machine Learning)은 예측 모델 개발 시 텍스트 데이터를 이용하여 모델의 성능을 높여주는 텍스트 분석 툴로, 비즈니스 사용자와 데이터 사이언티스트, 예측 모델 개발자 모두가 활용할 수 있습니다. 텍스트 분석은 자연어 처리 과정이