Tag: machine-learning

Advanced Analytics | Analytics | Artificial Intelligence | Data for Good | Machine Learning | SAS Events | Students & Educators | Work & Life at SAS
CTOからのあなたへの招待状~#HackinSASを開催

CTOからのあなたへの招待状 ~リアルワールドのためのグローバルデータサイエンス・ハッカソンイベントを開催~ 世界中のどこかにいる有志のあなたへ 従来からSASをご愛顧頂いている皆様、そして、これから新たに出会う皆様、こちらはSAS Instituteでございます。今回は、非常にInspired+Greatなニュースをお届けさせていただきます。 それは、SASがグローバルでHackinSASというデータサイエンス・ハッカソンイベントを開催するということです! 今回のイベントでは、グローバルで参加者を募集しています。もちろん、従来のSASユーザのみならず、開発者やオープンソースユーザ、学生の方々、Startup企業の方々、またはテクニカルパートナーの方々、誰でも参加可能なイベントです。また、今回イベントの主旨としては、皆様の周りにあるデータを用いて、そのデータから有用な情報を得て、リアルワールドのビジネス課題・社会問題を解決するためのソリューションや、よりクリエイティブなデータの使い道を発見することを目指しています。詳細は後述するイベント詳細情報をご参照ください。 SASは長年、データから有用な情報を得て、その情報をリアルワールドの社会問題・環境問題、そしてビジネス課題解決に貢献できる製品やソリューション、そしてサービスを開発し、そのナレッジを貯蓄してきました。また、たくさんのユーザの方々との関わり合いの中で得られた情報などもとても有益なものでした。ハッカソンイベントはまさに、そのような様々なナレッジや発想を持っている皆様に切磋琢磨できる舞台を提供しています。 まずSASのエグゼクティブ・バイス・プレジデント兼最高執行責任者兼最高技術責任者のOliver Schabenbergerからのメッセージをご覧ください。 クリック! では、イベント詳細情報は下記となります。  1.開催スケジュール ハッカソン全期間スケジュール 2020年12月17日-2021年2月15日 チームとテーマの登録期間。 この期間中に、あなたのチームを結成しましょう。そして、課題を定義し、サマリをご提出ください。 2021年1月―2月 リソース確保期間。 この期間中に、ハッカソンをするための無料イネーブルメントリソースを活用して、優位に立ちましょう。 2021年3月 ハッカソン正式開始期間。 この期間中に、あなたとチームメンバーの創造性を輝かせる時がきます。データとSASを使って課題を解決しましょう。 2021年4月 最終ラウンド期間。 最終ラウンドに参加できるチームが選定され、SAS Vector Labsチーム(SAS Innovation Hub)に紹介され、更なる課題解決のためのアプリケーション開発を行うことが可能です。 Virtual SAS® Global Forum 2021(2021年春に開催予定) 2021年のSAS Global Forumで優勝者の結果が公開されます!   事前ライブキックオフミーティング 2021年1月13日13:00 – 14:00オンラインで開催 開催概要: SASのエグゼクティブ・バイス・プレジデント兼最高執行責任者兼最高技術責任者のOliver Schabenbergerが、この他に類を見ないグローバルハッカソンとは何か、そしてビジネスの課題解決や社会貢献のためにアナリティクス、AI、オープンソースをどのように創造的な方法で活用できるのかについてお話します。 ハッカソンズ・インターナショナルのCEOであるAngela Bee ChanとSASのプロダクト・マーケティング・マネージャーであるMarinela Profiの魅力的な対談が行われます。彼らはこのハッカソンの中でできるコラボレーションと、HackinSASが単なる競争以上の価値あるものであるかをお話します。

Analytics | Artificial Intelligence | Machine Learning
Héctor Cobo 0
Inteligencia artificial en México, un mercado que madura

En algún momento, la inteligencia artificial (IA) y el machine learning (ML) parecían algo complicado y costoso para las empresas. Hoy, su efectividad y ubicuidad les ha abierto la puerta para incorporarlos a distintas actividades productivas. Ya no se cuestiona su relevancia. Actualmente, las organizaciones están conscientes de que el

Machine Learning
Katie Tedrow 0
Enhancing your Natural Language Processing: Intro to Conversational AI

Conversational AI can offer a way to provide that always-on 24/7, fast, convenient experience that can go anywhere (phone, computer smart speakers, even your car). It can provide a human-like experience through real-time, personalized interaction with AI running in the background. This technology is being applied across many industries for a variety of use cases (both customer-facing and for internal use).

Advanced Analytics | Analytics | Artificial Intelligence | Data Management | Machine Learning | Programming Tips
Mariana Fontanezi 0
SAS para Ciência de Dados? Sim!

A evolução do analytics e da ciência de dados gera constantes atualizações e transformações nas plataformas de análises. Este artigo tem o propósito de apresentar como o SAS tem acompanhado essa evolução. Ambiente Integrado: uma única plataforma, diversas tarefas O SAS oferece recursos que permitem acessar, explorar, transformar, analisar e

Advanced Analytics | Analytics | Artificial Intelligence | Internet of Things | Machine Learning
Blanca González 0
La ciencia de datos en el trayecto hacia la nueva normalidad

La ciencia de datos nos está ayudando a entender y, sobre todo, a proponer soluciones viables para los problemas más complejos que como sociedad e industria enfrentamos actualmente. Sin importar el perfil o sector de las organizaciones, las áreas de TI han encontrado en la ciencia de datos una alternativa

Advanced Analytics | Analytics | Machine Learning
Aline Riquetti 0
O aprendizado semissupervisionado é para o seu tipo de problema?

Os algoritmos de mineração de dados podem ser divididos em 4 grupos, a saber: aprendizado supervisionado, aprendizado não-supervisionado, aprendizado semissupervisionado e aprendizado por reforço. Embora os dois primeiros sejam vastamente conhecidos e implementados, os dois últimos não possuem a mesma popularidade. Mas, como veremos a seguir, isso não se deve

Advanced Analytics | Machine Learning
Austin Cook 0
Beyond NLP: Operationalizing Text Analytics

The Text Investigation Framework utilizes several technologies built on SAS Viya, including SAS Visual Text Analytics, SAS Visual Data Mining and Machine Learning, and SAS Visual Investigator. SAS Visual Investigator acts as the orchestrator to surface the results. With its broad set of capabilities, SAS Visual Investigator can perform scenario authoring, alert generation and disposition, and comprehensive workflow to gather vital outcomes and feedback.

Machine Learning
Katie Tedrow 0
The hybrid approach to enhancing your natural language processing

Unlocking the potential of your unstructured text data can lead to great business outcomes but the prospect of starting a new or enhancing your existing Natural Language Processing (NLP) program can feel overwhelming because of the inherently unique (and sometimes messy) nature of human language. Text data doesn’t fit neatly into rows or columns the way that structured data does, which can make it seem more complex to work with. Conversations and written language range from objective statements to subjective perspectives and opinions. The same sentence, depending on its intent and the nuances in how it's said, can have a positive, negative, or neutral sentiment. To get us started, we'll share different types of NLP models used to analyze unstructured data with a focus on the hybrid approach.

Advanced Analytics | Analytics | Data for Good
Melanie Carey 0
Take customer care to the next level with automated prediction in SAS Visual Analytics

What is automated prediction? Automated prediction, in less than a minute, runs several analytic models (such as decision trees, gradient boosting, and logistic and linear regression) on a specific variable of your choice. Most of the remaining variables in your dataset are automatically analyzed as factors that might influence your specified variable. They are called underlying factors. SAS then chooses the one model (champion model) that most accurately predicts your target variable. The model prediction and the underlying factors are then displayed. You can adjust the values of the underlying factors to determine how the model prediction changes with each adjustment.

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning
Charlie Chase 0
Rapid demand response forecasting helps retailers adapt during COVID-19

Rapid demand response forecasting techniques are forecasting processes that can incorporate key information quickly enough to act upon in real time by agile supply chains.   Retailers and consumer goods suppliers are urgently trying to determine how changes in consumer behavior will affect their regions, channels, categories, brands and products during

Advanced Analytics | Machine Learning
Austin Cook 0
Monotonic Constraints with SAS

A monotonic relationship exists when a model’s output increases or stays constant in step with an increase in your model’s inputs. Relationships can be monotonically increasing or decreasing with the distinction based on which direction the input and output travel. A common example is in credit risk where you would expect someone’s risk score to increase with the amount of debt they have relative to their income.

Advanced Analytics | Analytics | Artificial Intelligence | Data for Good | Data Visualization | Internet of Things | Machine Learning | Work & Life at SAS
小林 泉 0
SAS社員としての誇りーミツバチ・森林・絶滅危惧種の保護や医療への貢献にAI/アナリティクスを活用

SASの一つの顔は、アナリティクスで営利目的の意思決定を支援 筆者は、SAS社員として、20年以上に渡りアナリティクスおよびAIで企業・組織を支援してきました。 金融機関における、リスク管理や債権回収の最適化 通信業における、顧客LTV最大化、ネットワーク最適化やマーケティング活動の最適化 製造業における、需要予測、在庫最適化、製造品質の向上や調達最適化 流通・小売業における、需要予測やサプライチェーン最適化 運輸業における、輸送最適化や料金最適化 ライフサイエンス・製薬企業における、業務の最適化 官公庁における、市民サービス向上のための不正検知 など、様々な業種・業務においてアナリティクスの適用によるお客様のビジネス課題の解決に携わってきました。営利目的(ここでは市民サービスの向上も含めることにします)の企業・組織におけるアナリティクスの活用目的は主に以下の3つに集約されます。 収益(売り上げ)の増大 コストの低減 リスク管理 アナリティクスは、いわゆる「データ分析」を手段とし、過去起きたことを把握して問題を定義し、次に将来を予測し、様々な選択肢の中から最適な予測に基づいて意思決定をしていくことになりますが、その過程の中で、起きてほしい事象を予測して促進したり、起きてほしくない事象を予測して防いだり、その予測のばらつきを管理したりということを行っていきます。 このような営利目的でのアナリティクスの活用はSASという会社が誕生した40年以上前から行われており、基本的な活用フレームワークは変わっていません。IT技術の進化によって、利用可能なデータの種類や大きさが、増えてきただけにすぎないと言えます。例えば、昨今のAIブームの代表格であるディープラーニングですが、ディープラーニングという処理方式の進化と、GPUという処理機械の進化によって、非構造化データをより良く構造化しているものであり、もちろんモデリング時のパラメータ推定値は何十億倍にはなっていますが、モデリングのための1データソースにすぎません。もう少しするとディープラーニングも使いやすくなり、他の手法同様、それを使いこなすあるいは手法を発展させることに時間を費やすフェーズから、(中身を気にせず)使いこなせてあたりまえの時代になるのではないでしょうか。 SASのもう一つの顔、そして、SAS社員としての誇り、Data for Goodへのアナリティクスの適用 前置きが長くなりましたが、SAS社員としてアナリティクスに携わってきた中で幸運だったのは、データの管理、統計解析、機械学習、AI技術と、それを生かすためのアプリケーション化、そのためのツール、学習方法や、ビジネス価値を創出するための方法論や無数の事例に日常的に囲まれていたことだと思います。それにより、それら手段や適用可能性そのものを学習したり模索することではなく、その先の「どんな価値創出を成すか?」「様々な問題がある中で優先順位の高い解くべき問題はなにか?」という観点に時間というリソースを費やすことができていることだと思います。そのような日常の仕事環境においては、アナリティクスの活用を営利目的だけではなく、非営利目的の社会課題の解決に役立てるというのは企業の社会的責任を果たす観点においても必然であり、Data for Goodの取り組みとしてSAS社がユニークに貢献できることであり、SAS社員として誇れるところだと考えています。 最終的に成果を左右するのは「データ」 そして、もう一つの真実に我々は常に直面します。クラウド・テクノロジー、機械学習、ディープラーニングなどの処理テクノロジーがどんなに進歩しようともアナリティクス/AIによって得られる成果を左右するのは「データ」です。どのようなデータから学習するかによって結果は決まってきます。 IoT技術で収集したセンサーデータは知りたい「モノ」の真実を表しているだろうか? 学習データに付与されたラベル情報は正確だろうか? 学習データは目的を達成するために必要な集合だろうか? そのデータは顧客の心理や従業員の心理をどこまで忠実に表しているだろうか? 特に、Data for Goodのチャレンジはまさにそのデータ収集からスタートします。ほとんどの場合、データは目的に対して収集する必要があります。そして、下記の取り組みのうち2つはまさに、我々一人一人が参加できる、市民によるデータサイエンス活動として、AI/アナリティクスの心臓部分であるデータをクラウドソーシングによって作り上げるプロジェクトです。 Data for Good: 人間社会に大きな影響を及ぼすミツバチの社会をより良くする 概要はこちらのプレスリリース「SAS、高度なアナリティクスと機械学習を通じて健康なミツバチの個体数を増大(日本語)」をご参照ください。 ミツバチは、人間の食糧に直接用いられる植物種全体の75%近くに関して受粉を行っていますが、ミツバチのコロニーの数は減少しており、人類の食糧供給の壊滅的な損失につながる可能性があります。この取り組みでは、IoT, 機械学習, AI技術, ビジュアライゼーションなどSAS のテクノロジーを活用し、ミツバチの個体数の保全/保護する様々なプロジェクトを推進しています。この取り組みは以下の3つのプロジェクトから成り立っています。 ミツバチの群れの健康を非侵襲的に監視 SASのIoT部門の研究者は、SAS Event Stream ProcessingおよびSAS Viyaソフトウェアで提供されているデジタル信号処理ツールと機械学習アルゴリズムを用いて、ミツバチの巣箱の状態をリアルタイムで非侵襲的に追跡するために、生物音響監視システムを開発しています。このシステムによって養蜂家は、コロニーの失敗につながりかねない巣箱の問題を効果的に理解し、予測できるようになります。 関連ページ:5 ways to measure

Advanced Analytics | Machine Learning
Rick Wicklin 0
The Kullback–Leibler divergence between continuous probability distributions

In a previous article, I discussed the definition of the Kullback-Leibler (K-L) divergence between two discrete probability distributions. For completeness, this article shows how to compute the Kullback-Leibler divergence between two continuous distributions. When f and g are discrete distributions, the K-L divergence is the sum of f(x)*log(f(x)/g(x)) over all