The Data Roundtable
A community of data management expertsData governance plays an integral role in many enterprise information initiatives, such as data quality, master data management and analytics. It requires coordinating a complex combination of factors, including executive sponsorship, funding, decision rights, arbitration of conflicting priorities, policy definition, policy implementation, data stewardship and change management. With so much overhead involved in
Hadoop may have been the buzzword for the last few years, but streaming seems to be what everyone is talking about these days. Hadoop deals primarily with big data in stationary and batch-based analytics. But modern streaming technologies are aimed at the opposite spectrum, dealing with data in motion and
In Part 1 of this series, we defined data governance as a framework – something an organization can implement in small pieces. Data management encompasses the disciplines included in the data governance framework. They include the following: Data quality and data profiling. Metadata (business, technical and operational). Data security. Data movement within the enterprise.
.@philsmion says that even the "best governed" organization today isn't safe from inquiring minds.
Data integration teams often find themselves in the middle of discussions where the quality of their data outputs are called into question. Without proper governance procedures in place, though, it's hard to address these accusations in a reasonable way. Here's why.
Data governance must encompass management of the full life cycle of a data policy – its definition, approval, implementation and the means of ensuring its observance - David Loshin, Data Policies and Data Governance I was checking out my Google stats on Data Quality Pro recently and observed that "How