The Data Roundtable
A community of data management expertsDuring a data quality assessment, one of my clients discovered that a large chunk of data that ultimately fed into their business analytics engine was sourced externally. After examining the contracts surrounding this data, I found that 100% of it failed to possess service-level agreements (SLAs) for the quality of
I was surprised to learn recently that despite the reams of laws and policies directing the protection of personally identifiable information (PII) across industries and government agencies, more than 50 million Medicare beneficiaries were issued cards with a Medicare Beneficiary Number that's based on their Social Security Number (SSN). That's
Historically, before data was managed it was moved to a central location. For a long time that central location was the staging area for an enterprise data warehouse (EDW). While EDWs and their staging areas are still in use – especially for structured, transactional and internally generated data – big
In the first blog of this four-part series, we discussed traditional data management and how we can apply these principles to our big data platforms. We also discussed how metadata can help bridge the gap of understanding the data as we move to newer technologies. Part 2 will focus on
@philsimon says that it's downright silly to ignore the benefits of thinking about data-related issues in different and unexpected ways.
Data quality initiatives challenge organizations because the discipline encompasses so many issues, approaches and tools. Across the board, there are four main activity areas – or pillars – that underlie any successful data quality initiative. Let’s look at what each pillar means, then consider the benefits SAS Data Management brings