Uncategorized

Analytics | Artificial Intelligence
SAS Korea 0
인공지능(AI)이 헬스케어 산업에 불러올 혁신적인 변화는?

인공지능(AI)이 우리에게 미치는 영향이 나날이 커지면서 일자리를 대체할 것이라는 우려도 높아지고 있습니다. 이를 위해서 인공지능의 윤리 방안과 규제에 대한 논의가 이루어지고, 기업이 알고리즘으로 인해 일자리를 빼앗긴 직원에게 재교육을 제공해야 한다는 목소리가 나오고 있는데요. 하지만 이러한 모든 내용은 인공지능이 미치는 부정적인 면에만 치우쳐 있습니다. 그렇다면 인공지능이 우리의 삶에 주는 혜택으로는 무엇이 있을까요? 인공지능,

Data Management | Internet of Things
Jeanne (Hyunjin) Byun 0
사물인터넷(IoT)은 보험 산업을 어떻게 발전시킬까요? ‘인슈어테크’ 실현을 위해 고려해야 할 5가지 과제

보험 업계는 변화에 느리다는 평을 받는 보수적인 산업이지만 지난 5년간 엄청난 변화와 혁신을 경험하고 있습니다. 보험사들은 고객과 유통 관계에서 혁신을 모색하며 디지털 이니셔티브에 많은 투자를 하고 있는데요. 이와 함께 데이터 분석, 인공지능 등의 정보기술(IT)을 활용해 기존 보험 산업을 혁신하는 인슈어테크(insurtech)가 디지털 기회를 활용할 수 있는 보험 업계의 새로운 분야로 떠오르고

Work & Life at SAS
0
A Time of Giving

Fall…it’s my favorite time of year. The air is crisp, the leaves are colorful and exercising outdoors is once again appealing.  Most of all, its this time of year that I turn my attention to one of my favorite events of the year: #GivingTuesday.   While Cyber Monday and Black

Artificial Intelligence | Machine Learning
SAS Korea 0
인공지능(AI)이 재정의하는 윤리는? 윤리적인 인공지능 시스템 관리를 위한 4가지 핵심요소

인공지능(AI)은 1950년대부터 머신러닝, 링크 걸기 시작 딥러닝(deep learning), 인지 컴퓨팅(cognitive computing)이 점차 발전하면서 우리와 꽤 오랜 시간을 함께 해왔습니다. 최근 달라진 점이 있다면 아마 활용할 수 있는 데이터의 양이 어마어마하게 늘었다는 것인데요. 방대한 양의 데이터 덕분에 오늘날 과거에는 불가능했던 방식으로 인공지능 기반의 모델을 학습시킬 수 있게 되었습니다. 이러한 인공지능은 지금의 세상과 거대한 데이터를 이해하는

Analytics | Learn SAS
Rick Wicklin 0
Fit the Pareto distribution in SAS

Will the real Pareto distribution please stand up? SAS supports three different distributions that are named "Pareto." The Wikipedia page for the Pareto distribution lists five different "Pareto" distributions, including the three that SAS supports. This article shows how to fit the two-parameter Pareto distribution in SAS and discusses the

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning
Makoto Unemi (畝見 真) 0
SAS Viya:Python API向けパッケージ:DLPyの最新版1.0拡張機能概要紹介

SASでは、従来からオープン・AIプラットフォームであるSAS Viyaの機能をPythonから効率的に活用いただくためのハイレベルなPython向けAPIパッケージであるDLPyを提供してきました。 従来のDLPyは、Viya3.3以降のディープラーニング(CNN)と画像処理(image action set)のために作成された、Python API向けハイレベルパッケージです。 DLPyではKerasに似たAPIを提供し、より簡潔なコーディングで高度な画像処理やCNNモデリングが可能でした。 そして、この度、このDLPyが大幅に機能拡張されました。 最新版DLPy1.0では、以下の機能が拡張されています。 ■ 従来からの画像データに加え、テキスト、オーディオ、そして時系列データを解析可能 ■ 新たなAPIの提供: ・ RNN に基づくタスク: テキスト分類、テキスト生成、そして 系列ラベリング(sequence labeling) ・ 一般物体検出(Object Detection) ・ 時系列処理とモデリング ・ オーディオファイルの処理と音声認識モデル生成 ■ 事前定義ネットワーク(DenseNet, DarkNet, Inception, and Yolo)の追加 ■ データビジュアライゼーションとメタデータハンドリングの拡張 今回はこれらの拡張機能の中から「一般物体検出(Object Detection)」機能を覗いてみましょう。 SAS Viyaでは従来から画像分類(資料画像1.の左から2番目:Classification)は可能でした。例えば、画像に映っている物体が「猫」なのか「犬」なのかを認識・分類するものです。 これに加えて、DLPy1.0では、一般物体検出(資料画像1.の左から3番目:Object Detection)が可能になりました。 資料画像1. (引用:Fei-Fei Li & Justin Johnson & Serena Yeung’s Lecture

Analytics | Data Management
David Pope 0
Why SAS?

I've worked at SAS for over 27 years and have often been asked: What does SAS do? or Why should I choose SAS? It all boils down to one question: Why SAS? While there are many approaches to answering this question, I recently came up with three short, yet powerful,

Artificial Intelligence | Fraud & Security Intelligence | Machine Learning
John Maynard 0
Unasked fraud questions answered by AI

Artificial intelligence often seems misunderstood, especially in fraud. The same is true of machine learning. One of the amazing things about them is they ask the unasked questions. This occurs as artificial intelligence (AI) and machine learning (ML) go about their daily work. So, what is the unasked question? Too

1 84 85 86 87 88 260