Find out about the new edition of Ron Cody's latest best selling book.
Uncategorized
Continued fractions show up in surprising places. They are used in the numerical approximations of certain functions, including the evaluation of the normal cumulative distribution function (normal CDF) for large values of x (El-bolkiny, 1995, p. 75-77) and in approximating the Lambert W function, which has applications in the modeling
Many of the most beautiful areas in the US are owned by the government, to preserve them and allow access for everyone to enjoy them. And most US schools are traditionally closed during the summer, which provides families a great opportunity to go visit state and federal lands (parks, forests,
Are you curious? Do you have a passion for science, technology, engineering and math (STEM)? Do you enjoy robotics or statistics? Do you like to solve hard problems? If you answered yes to any of the above, you might have what it takes to be a data scientist. Recently, I
암 치료는 매우 힘든 과정입니다. 따라서 환자별 최적의 치료법을 선택하고, 환자가 효과 없는 치료법으로 인해 필요 이상의 고통을 받지 않도록 하는 것이 중요한데요. 검사를 통해 치료의 진척 상황을 측정할 수는 있지만, 많은 환자들이 치료 과정을 변경하기에는 너무 늦은 시기까지 처방의 효과를 알지 못합니다. 그렇다면 만약 특정 암 치료의 효과를 수일
Hybrid computers that marry CPUs and devices like GPUs and FPGAs are the fastest computers, but they are hard to program. This post explains how deep learning (DL) greatly simplifies programming hybrid computers.
Hace algún tiempo, asistí a una presentación en la que un ejecutivo de un fabricante de teléfonos argumentaba que el teléfono perfecto debería incluir un botón para cada funcionalidad importante: para ajustar el volumen, para tomar fotos, para hacer llamadas. En ese mismo evento, un representante de Apple aseguraba que
In the SAS/IML language, you can only concatenate vectors that have conforming dimensions. For example, to horizontally concatenate two vectors X and Y, the symbols X and Y must have the same number of rows. If not, the statement Z = X || Y will produce an error: ERROR: Matrices
机上で男女が世界地図を広げて、何かの打ち合わせをしています。 航空会社A社の企画担当が、競合他社の路線を分析しているのか? それとも、これから二人で行く海外旅行のプランを立てているのか? いえいえ、これはSAS Visual Analyticsで作成されたダッシュボードの画面です。 このダッシュボードの構成は以下の通りです。 ・使用しているデータ:OpenFlightsで公開されている世界の空港の利用状況のデータ ・真ん中の世界地図:「ネットワークダイアグラム」オブジェクトを使用し、背景に地図を表示して、路線を描画 バブルの大きさは、利用頻度を表しています。 ・左側の棒グラフ:利用頻度の高いトップ10の航空会社 ・右下と左下の数値:「キーの値」オブジェクトを使用し、注目すべき指標をクローズアップしています。例えば右下の値は、利用頻度が最も高い空港名とその数を示しています。 ・人の手や机、カメラ、パソコン等は背景に使用している画像です。 今、このダッシュボードでは、左側の棒グラフ上で「Air China」が選択され、ネットワークダイアグラムと2つの指標はAir Chinaに自動的に絞り込まれた内容が表示されています。 でも、まだ、これは張りぼて? と思っていませんか。 以下は、左側の棒グラフ上で「US Airways」を選択した状態です。 ネットワークダイアグラムや2つの指標の内容が変わっているのがわかりますね。 ご覧の通り、インタラクティブなダッシュボードです。 みなさんも、こんなクールなダッシュボードで戦略を練ってみれば、新たなアイデアが湧いてくるかもしれませんね。 このブログは、SAS CommunityサイトのVisual Analytics ギャラリーに公開されている内容に基づいています。
If you're good at games like Wheel of Fortune, Scrabble, or Words with Friends, you've probably figured out that certain letters appear more often than others. But do you have a cool way to figure out which letters appear most & least frequently? How about using a computer to plot
인공지능(AI), 사물인터넷(IoT) 등 다양한 디지털 기술이 융합되면서 기업의 마케팅 전략도 혁신을 거듭하고 있습니다. 특히 고객이 특정 순간과 장소에서 기대하는 바를 충족시키는 ‘개인화된 경험’이 핵심 마케팅 역량으로 떠올랐는데요. 이를 위해서는 고객 데이터를 실시간으로 분석해 개별 고객의 특성과 원하는 바를 보다 잘 이해하고, 언제 어디서나 고객의 소비 여정과 함께하는 실시간 마케팅(Real-time marketing) 전략을 구현해야
Note: The following concludes an eight-part serialization of selected content from Steve Morlidge's The Little (Illustrated) Book of Operational Forecasting. Good forecasts don’t always ‘look right’ Many forecasters believe that they can tell how good a forecast is by ‘eyeballing’ it. Good forecasts just ‘look right’ or so they would
The true test of when a technology has become mainstream is when it is being widely used across the whole business, from customer-facing functions to backroom work. Analytics has been customer-focused for some time, and has also been widely used for individual performance, for example, by sports teams. The advent
A SAS programmer recently asked me how to compute a kernel regression in SAS. He had read my blog posts "What is loess regression" and "Loess regression in SAS/IML" and was trying to implement a kernel regression in SAS/IML as part of a larger analysis. This article explains how to
Note: Following is an eight-part serialization of selected content from Steve Morlidge's The Little (Illustrated) Book of Operational Forecasting. The measurement challenge So here is the forecasters dilemma: There will always have forecast error. The challenge is to work out the cause of the error and to take the appropriate
Using relative file paths in your SAS programs? Use the new DLGCDIR function to manage your SAS working directory -- even in SAS Enterprise Guide or SAS Studio -- to ensure your programs are working the way they ought to.
We'll take a short break from the Steve Morlidge book serialization, to announce that SAS Research & Development has again provided $10,000 in funding for the SAS/IIF grant program. Both academics and industry practitioners are encouraged to apply and conduct original research for improving the practice of forecasting. SAS/IIF Grants
This blog post highlights more SAS Global Forum papers chosen by SAS Press authors.
IFRS 17은 보험 업계에 대대적인 변화의 바람을 일으키고 있습니다. 이 새로운 국제회계기준이 발효되는 2021년 1월은 아직 먼 미래처럼 느껴질 수 있지만, 유럽 일반개인정보보호법(GDPR) 경험을 통해 배웠듯이 모든 과정은 놀랍도록 빠르게 진행될 것입니다. 무엇보다 IT 솔루션은 급하게 구현할 수 있는 것이 아닙니다. 충분한 시간을 갖고 현명한 결정을 내리기 위해서는 지금 바로 행동에
Note: Following is an eight-part serialization of selected content from Steve Morlidge's The Little (Illustrated) Book of Operational Forecasting. The forecasting challenge It is not possible to forecast any future outcomes precisely. Only the signal is potentially forecastable – noise is unforecastable in principle. And all forecasts assume that the
My buddy Chris recently blogged about accessing the IoT data from an M&M jar being monitored in one of the breakrooms at SAS. Now I'm going to take things a step further and analyze that data with some graphs. Grab a snack, and follow along, as we dig into this
As a third-year intern here at SAS and rising sophomore in college, I’ve been fortunate enough to have completed a few projects in various corners of the tech space. Having gathered my third data point this summer, and in the spirit of SAS #analytics, I’ve started making some data-driven inferences
A frequent topic on SAS discussion forums is how to check the assumptions of an ordinary least squares linear regression model. Some posts indicate misconceptions about the assumptions of linear regression. In particular, I see incorrect statements such as the following: Help! A histogram of my variables shows that they
Note: Following is an eight-part serialization of selected content from Steve Morlidge's The Little (Illustrated) Book of Operational Forecasting. Data Series are different – and it matters to forecasters The nature of demand that is to be forecast, as represented by patterns in the historic data series, that is to
ビジュアルパイプラインで予測モデル生成(テンプレート使用編)では、SAS ViyaのModel Studioを使用し、標準で実装されているパイプラインのテンプレートを使用して、予測モデルを自動生成する手順を紹介しました。 今回は、標準実装のテンプレートに含まれている、「自動特徴量エンジニアリングテンプレート」を紹介します。 「特徴」=入力=変数(独立変数、説明変数)であり、 特徴量エンジニアリングとは、予測モデルの精度を高めるために、学習用の生データに基づき、特徴を変換したり、抽出したり、選択したり、新たな特徴を作り出す行為です。 以下は、特徴量エンジニアリングの例です。 ・郵便番号などの高カーディナリティ名義変数のエンコーディング(数値化) ・間隔尺度の変数の正規化、ビニング、ログ変換 ・欠損パターンに基づく変換 ・オートエンコーダー、主成分分析(PCA)、t-SNE、特異値分解(SVD)などの次元削減 ・季節的な傾向を把握するために、日付変数を別々の変数に分解して曜日と月と年の新しい変数を作成 より良い「特徴」を作り出し、選択することで、予測モデルの精度が向上するだけでなく、モデルを単純化し、モデル解釈可能性を高めるのにも役立ちます。 しかし、従来、予測モデリングのプロセスにおいて、データサイエンティストは、その多くの時間を特徴量エンジニアリングに費やしてきました。しかも、特徴量エンジニアリングの良し悪しは、データサイエンティストのスキルに大きく依存してしまいます。 こうした課題に対処するために、SAS Viyaでは、自動特徴量エンジニアリングテンプレートを提供しています。このテンプレートを使用することで、特別なスキルを必要とせず、特徴量エンジニアリングにかける時間を短縮し、より精度の高い予測モデル生成が可能になります。 以下が、SAS ViyaのModel Studioに実装されている「自動特徴量エンジニアリングテンプレート」です。 このテンプレートは、大きく3つのステップで構成されています。 高カーディナリティ変数に対するエンコーディング(数値化) 最良変換、PCA / SVD、オートエンコーダーを使用して新たな特徴を作成 特徴エンジニアリング未/済みデータに基づく予測モデルの精度比較 ステップ1.高カーディナリティ変数に対するエンコーディング(数値化) このステップの最初のノードは、「SASコード高カーディナリティ」という名のSASコードノードです。 SASコードノードを使用することで、SASプログラムをパイプラインに組み込むことができます。 このノードを選択し、右側画面内でコードエディタ:「開く」をクリックすると、その内容を確認できます。 このSASコードノードでは、最初に、20〜1,000レベルのカーディナリティの高い変数(固有値が多すぎる名義変数)を識別します。minlevelsとmaxlevelsの値を更新することで、この範囲を簡単に変更することもできます。次に、数値変換(TRANSFORM = LEVELENCODE)を指定し、これらの変数に対してのみレベル(水準)エンコーディングを行います。実際に変換を行うためには、「データマイニングの前処理」にある「変換」ノードを実行する必要があるため、「変換」ノードが接続されています。 レベルエンコーディングでは、名義を数値に変換します。これは、カーディナリティの高い変数を扱う場合に特に便利です。これらの変数は、ほとんどの機械学習アルゴリズムにおいてコンピューティングリソースの負荷をあげてしまうことが多いからです。最初に名義変数のレベルをアルファベット順に並べ替え、各レベルに昇順に数字(1から始まる)を割り当てます。 ステップ2.最良変換、PCA / SVD、オートエンコーダーを使用して新たな特徴を作成 ステップ2では、以下の3つの異なる自動特徴量エンジニアリング手法が適用されます。 変換-最良(Best):このノードは、「データマイニングの前処理」にある「変換」ノードを使用して、すべての間隔変数に対して「最良(Best)」の変換を行います。この方法では、各間隔変数に対して、ランク付け基準(ターゲットとの相関など)に基づいて、単一変数の変換(逆変換、標準化、センタリング、ログ変換など)を比較し、最も高いランク付けを持つ変換を選択します。 特徴抽出- PCA:このノードは、「データマイニングの前処理」にある「特徴抽出」ノードを使用して、間隔入力変数に対する自動特徴抽出手法として「自動」を指定しています。「自動」では、間隔入力変数の総数が500以下の場合は、主成分分析(PCA)が適用され、それ以外の場合は、特異値分解(SVD)が適用されます。 特徴抽出-自動エンコーダ:このノードでは、オートエンコーダを用いて特徴抽出を行います。この手法では、特徴抽出にすべての入力変数(間隔と名義)を使用します。オートエンコーダーは、入力データを再構成するために使用できる特徴のセットを学習することを目的とした教師なし学習技術です。手短に言えば、ニューラルネットワークは、ターゲット(出力)ニューロンを入力ニューロンと等しく設定することによって訓練されるものです。 このノードでは、中間隠れ層が10に設定されているので、10個の新しい特徴が作成されます。 ステップ3.特徴エンジニアリング未/済みデータに基づく予測モデルの精度比較 最後のステップでは、勾配ブースティングを用いた5つの異なる予測モデルが生成されます。 ・高カーディナリティー変数のレベルエンコーディング+特徴抽出(PCA)を施したデータに基づくモデル ・高カーディナリティー変数のレベルエンコーディング+特徴抽出(オートエンコーダー)を施したデータに基づくモデル ・高カーディナリティー変数のレベルエンコーディング+変換-最良を施したデータに基づくモデル ・高カーディナリティー変数のレベルエンコーディングを施したデータに基づくモデル ・元のデータ(特徴量エンジアリングを施していない)に基づくモデル 5つのモデルを生成後、パフォーマンスを比較します。勾配ブースティングは、非常に効果的な教師あり学習アルゴリズムであり、予測精度の面で他のアルゴリズムより優れていることが多いため、使用しています。
Jim Harris warns against allowing your data lake to become a poorly managed and ungoverned data dumping ground.
Note: Following is an eight-part serialization of selected content from Steve Morlidge's The Little (Illustrated) Book of Operational Forecasting. Forecasting is not compulsory Operational forecasting is important but it is not mandatory. operational forecasts are used to make sure that a business can respond effectively to customer demand for its
ビジュアルパイプラインで予測モデル生成(基本編)では、SAS ViyaのModel Studioを使用し、パイプラインを一から作成し、予測モデルを生成する手順を紹介しました。 今回は、前回からの続きとして、予め用意されているパイプラインのテンプレートを使用した、モデル生成手順を紹介します。 パイプライン・テンプレートの選択と実行 実行結果(モデル精度)の確認 1.パイプライン・テンプレートの選択と実行 パイプラインの追加アイコンをクリックすると、 「パイプラインの新規作成」ダイアログが表示されます。 パイプラインの名前を入力し、「テンプレート」から「テンプレートの参照…」を選択すると、 標準で実装されているテンプレートのリストが表示されます。 この中から使用したいテンプレートを選択し、「OK」をクリックします。今回は、「分類尺度のターゲット変数の高度なテンプレート」を使用します。 さらに、「保存」をクリックすると、 選択したパイプラインの内容が表示されます。 このテンプレートでは、以下の7つのモデルを生成し、結果を比較することができます。 ・データに対する前処理(欠損値補完と変数選択)後に、ロジスティック回帰(ステップワイズ法)とニューラルネットワークでモデル生成 ・データに対する前処理(欠損値補完)後に、ロジスティック回帰(増加法)でモデル生成 ・データに対する前処理無しで、勾配ブースティング、フォレスト、ディシジョンツリーでモデル生成 ・上記6つのモデルのアンサンブルモデルの生成 ※テンプレートに使用されている機能ノードごとの詳細なオプション内容は右側画面内で確認でき、必要に応じて変更可能です。また、パイプライン内への機能ノードの追加・削除・変更などカスタマイズも可能です。 ※一から作成したパイプラインや、既存テンプレートをカスタマイズしたパイプラインを、その企業独自のテンプレートとして共有し、活用することができます。 ※一つのプロジェクト内に、複数のパイプラインを作成し、結果を比較することができます。 パイプラインの実行アイコンをクリックし、実行します。実行中の機能ノードは時計アイコンがクルクル回転し、正常に完了すると緑のチェックマークが表示されます。 2.実行結果(モデル精度)の確認 パイプラインの実行が完了したら、ビジュアルパイプラインで予測モデル生成(基本編)と同様に、「モデルの比較」ノードのスノーマンアイコンをクリックし、メニューから「結果」を選択し、このパイプラインの実行結果を確認することができます。 また、一つのプロジェクト内で、複数のパイプラインを作成している場合には、パイプライン間でモデル精度を比較し、プロジェクト内でのチャンピオンモデルを確認することができます。 画面上部の「パイプラインの比較」をクリックします。 パイプライン2の勾配ブースティングのモデルの精度が最も高い、チャンピオンモデルであることが示されています。 以上が、パイプラインのテンプレートを使用して、予測モデルを生成する際の手順です。 コーディングスキルを持たないビジネスユーザーでも、まず、学習用のデータを選択し、予測対象の項目を選択し、テンプレートを選んで実行するだけで、精度の高いの予測モデルを自動生成することができるということです。 ※ビジュアルパイプラインのテンプレートを使用したモデル生成は、SAS Viya特設サイトにある動画でもご覧いただけます。
When parents decide it is time to move to simpler living, whether it be into a senior community or just into a smaller, more manageable house, the question of what to do with all that stuff steps into our thoughts like a the proverbial elephant in the room.
Showing the most popular jobs in each state is interesting (as I showed in my previous two blogs 1, 2) ... but not that interesting. How about something a little more quirky?!? ... Let's determine the most disproportionately popular job in each state! Their Map I got the idea for