Uncategorized

Analytics
Jihye Yoo 0
SAS, Boemska 인수 및 새로운 CTO 임명

SAS가 클라우드 시장 및 타사 애플리케이션 등에 AI 접목을 촉진하기 위해 로우코드/노코드 애플리케이션 배포 및 분석 워크로드 관리 전문 영국 비상장 회사 보엠스카(Boemska)사를 인수했습니다. SAS는 이번 인수로 획득한 기술을 SAS Viya에 적용해 고객의 클라우드 분석 관련 비용을 절감하고, 모델을 모바일 및 엔터프라이즈 앱 등에 이식할 수 있게 될 예정입니다. 이를

Analytics
Ketil Kristensen 0
How do you adapt your insurance pricing strategy in the face of increased price competition?

Many countries in Europe have in previous years experienced increased price competition for general insurance products. Especially in Southern Europe, the competition has been very fierce, fueled by online price comparison websites. In Spain, Portugal and Greece, there has been a substantial drop in average premiums for products like motor,

Analytics
Mike Gilliland 0
Preview of Foresight (Winter 2021)

Through the M4 and M5 competitions, we've seen the promising performance of machine learning approaches in generating forecasts. The SAS whitepaper "Assisted Demand Planning Using Machine Learning for CPG and Retail" describes a role for ML in augmenting the demand planning by guiding the review and override of statistical forecasts.

Analytics | Risk Management
DooHo Lee 0
코로나 시대, 은행의 리스크 관리

코로나19가 광범위하게 확산되면서 생산활동 중단, 소비 감소, 교역 감소 등 세계 경제에 심각한 타격이 이어지고 있습니다. 이 충격파를 최대한 완화하기 위해 각국 정부는 다양한 재정적 지원을 투입하고 있습니다. 그럼에도 대부분의 기업과 개인은 코로나19로 경제적 어려움을 겪고 있으며, 이로 인해 은행에서는 다음과 같은 과제에 직면하고 있습니다. 여신관리 코로나19의 영향을 가장 크고

Analytics
Joon-Hyung Koh 0
[셀프서비스 분석 #2] 오늘 배워서 내일부터 실무에 적용하는 비즈니스 인텔리전스

지난 글에서는 기존 데이터 분석의 한계와 현업 사용자가 데이터 분석을 해야 하는 이유, 그리고 시티즌 데이터 사이언티스트가 되기 위한 조건을 알아봤습니다. 그렇다면 프로그래밍 기술이나 전문적인 분석 기술에는 능숙하지 않은 현업 사용자가 어떻게 데이터를 분석할 수 있을까요? 전문가 영역이었던 데이터 분석이 일반 현업 사용자로 확대되는 여러 움직임은 오래전부터 있었습니다. 그 가운데

Analytics | Data Visualization
Joon-Hyung Koh 0
[셀프서비스 분석 #1] 시티즌 데이터 사이언티스트의 조건

지금처럼 빠르게 변화하는 비즈니스 환경에서 지속적인 성장을 이루기 위해서는 경영진과 분석가, 현업 사용자 등 기업 구성원 모두가 필요한 인사이트를 제때 확보하고, 이를 기반으로 최상의 결정을 내리고, 필요한 조치를 취할 수 있어야 합니다. 누구나 쉽게 데이터를 들여다보고, 탐색하고, 이해하고, 분석할 수 있는 단일화되고 통합된 분석 환경이 필요한 이유입니다. 본 기고문에서는 시티즌

Machine Learning
Afshin Oroojlooy 0
Application of reinforcement learning to control traffic signals

In this article, we summarize our SAS research paper on the application of reinforcement learning to monitor traffic control signals which was recently accepted to the 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada. This annual conference is hosted by the Neural Information Processing Systems Foundation, a non-profit corporation that promotes the exchange of ideas in neural information processing systems across multiple disciplines.

1 37 38 39 40 41 256