Machine Learning

Get the latest machine learning algorithms and techniques

Machine Learning | Students & Educators
0
オンラインコース「Machine Learning Using SAS Viya」のご紹介(Week5・6)

本記事では、SASのオンライン学習コース「Machine Learning Using SAS Viya」について引き続きご紹介します。このコースはGUI上で機械学習理論を学習できる無料のプログラムです。ご登録方法やWeek1・2については前々回の記事を、Week3・4については前回の記事をご参照ください。最終回となる本記事では、Support Vector Machineを扱うWeek5と、Model Deploymentを扱うWeek6をご紹介します。 Week5:Support Vector Machines Week1・2、Week3・4と同様に、通信事業会社の顧客解約率をテーマに機械学習の具体的手法について学習します。Week5ではサポートベクターマシンという手法を用い、解約可能性に基づき顧客を分類するモデルを作成します。 ・Building a Default Support Vector Machine Model Week5で扱うトピックはサポートベクターマシン(SVM)です。画像認識や文字認識、テキストマイニングで用いられることが多い手法で、複雑なパターンもフレキシブルに表現できるものの、結果の解釈が難しいという特徴を持ちます。分類問題に用いられることが多く、最も簡単な例としては、下の画像のように二種類の出力を分ける直線が挙げられます。この例では分類可能な直線は何通りも考えられますが、マージン最大化という手法を用いて最適な分類線を選択します。本セクションではこれらのSVMの基礎を学習しましょう。 ・Modifying the Model Methods of Solution 本セクションでは、あるデータセットが通常のSVMで分類できない場合に用いるソフトマージンという手法を学習します。通常のSVMとは異なり、この手法は分類の誤りをある範囲内で許容しますが、それぞれの誤りに対しペナルティを課します。合計のペナルティを最小化する境界を最適な分離平面とみなし、ラグランジュの未定係数法を用いて所望の境界を推定します。ペナルティに関するパラメータを変更しながら、モデルの性能を確認しましょう。 ・Modifying the Model Kernel Function 線形分離不可能なデータでも、ある写像により超平面での分離可能な高次元の特徴空間上の点に変換することでSVMが適用可能になります。この際、その特徴空間内における内積は、カーネル関数と呼ばれるものの評価に置き換えられる(カーネルトリック)という性質を用いると、計算量の爆発を防ぎSVMが実装可能です。このカーネル法を用いて、モデルの性能を改善してみましょう。SVMで扱うのはあくまで超平面であるため幾何的な解釈可能性があると言われるものの、多くの場合、依然として十分に複雑で結果の解釈が困難です。そこで解釈を助ける指標としてICEプロットや変数の重要度について学習します。 Week6:Model Deployment Week1~5ではデータの前処理やモデルの作成について学習してきました。最終回となるWeek6では、Analytics LifecycleのDeploymentの段階を学習します。 ・Model Comparison and Selection 今まで複数のモデルを学習してきましたが、すべての状況において最適なモデルは存在しません。様々な観点でモデル間比較を行い最も高性能なモデルをチャンピオンモデルとして採用します。主に数値的スコアに基づく比較が行われますが、その際、ROC曲線・AUC値を用いたモデル間性能比較や、ゲインチャート(CPHチャート)・LIFTチャートを用いたモデルの採用・不採用の間での比較などが行われます。これらの指標に加えて、ビジネスの文脈に応じ、学習や評価のスピード・実装可能性・ノイズへの頑健性・解釈可能性などを判断基準にすることも考えられます。 ・Model Scoring and Governance Week1ではData, Discovery, DeploymentからなるAnalytics Lifecycleの概要を学習しました。これまで顧客の解約予測モデルを作成してきましたが、Analyticsはそのモデルを使用して終わりではありません。ビジネスの状況は刻一刻と変化し、それに伴って新たなデータが蓄積されていきます。先ほど決定したチャンピオンモデルがいかに高性能であっても、一定期間後に同様の性能を持つかは決して自明ではなく、モデルのモニタリングを通して性能を逐一確認する必要があります。並行して、新たな状況に関してDataの段階から分析します。その際、新たなチャレンジャーモデルを作成し、現行のチャンピオンモデルとの性能比較によりモデルを改善する手法や、新たに入手したデータを用いて逐一モデルのパラメータを調整するオンラインアップデートという手法が用いて、モデルを高性能に維持します。モデル作成後も継続してDataやDiscoveryの作業を行うことが、Analytics

Machine Learning | Students & Educators
0
オンラインコース「Machine Learning Using SAS Viya」のご紹介(Week3・4)

前回に引き続き、SASのオンライン学習コース、「Machine Learning Using SAS Viya」についてご紹介します。これはGUI上で機械学習理論を学習できる無料のプログラムです。ご登録方法やWeek1・2に関しては前回の記事をご参照ください。本記事ではWeek3・4の内容をご紹介します。Week3ではDecision Treeについて、Week4ではNeural Networkについて取り扱います。 Week3:Decision Tree and Ensemble of Trees Week1・2と同様に、通信事業会社の顧客解約率をテーマに機械学習の具体的手法について学習します。Week3では、ディシジョンツリーという手法を用いて、解約しそうな顧客を分類するモデルを作成します。 ・Building a Default Decision Tree Model Week3は右図のようなディシジョンツリーについて学習します。これは、図のように各ノードに与えらえた条件式に基づき入力データを分類するモデルです。結果の解釈が容易である点が大きな特徴ですが、オーバーフィッティングに陥りやすいという欠点もあります。デモを参考に基本的なディシジョンツリーを作成しましょう。   ・Modifying the Model Tree Structure ディシジョンツリーはパラメータとして木の構造を変更する事ができます。最大の深さや子ノードの数を変えると木の大きさが変わり、葉の最大要素数を減らすと分割が細かくなります。データの複雑さや過学習などの観点から各パラメータの及ぼす影響を学習し、実際に条件を変更して結果を比べてみましょう。 ・Modifying the Model Recursive Partitioning ディシジョンツリーの作成手順について学習します。まず、ある一つの集合を複数の集合へ分割する基準(不等式など)を作成します。この際、すべての分割方法を考え、その中から要素を最も適切にグループ化できる基準を選択します。例えば動物をグループ化する下の例については、多くの動物が混じっている上の状態よりも、シマウマの比率が高い下の状態のほうが適切とみなせます。ジニ係数やエントロピーを用いると、このような複数のグループの純度を数値的に比較できます。以上のようなグループ化手順を順々に繰り返し、最終的に一つの木構造を作成します。再帰的分割と言われるこの手法の詳細や、分割選択基準となるエントロピー・ジニ係数について学習し、ディシジョンツリーの理論的構造を把握しましょう。 ・Modifying the Model Pruning ディシジョンツリーは、サイズが過度に大きいとオーバーフィッティングを引き起こし、逆に過度に小さいと十分な汎化性能が得られません。そこで、まず最大のツリーを作成した後、重要でないノードを切り落としていくことでサイズを段階的に小さくし、最終的にバリデーションデータに対するスコアが最大となるサイズのツリーを採用します。プルーニングと言われるこの手法を実践しましょう。ツリーの大きさなどモデルに対して外部から設定する条件はハイパーパラメータと言われ、モデルの性能を高めるにはその最適化(チューニング)が不可欠ですが、本セクションではそれを自動的に行う手法も学習します。   ・Building and Modifying Ensembles of Trees ディシジョンツリーは入力データの影響を受けやすく、微小な変化に対しても大きく構造を変化させるため、安定した構造を取りません。しかし、一般にツリーの構造が変わったとしてもモデルの性能に大きな差が生じないという特徴があります。この性質を活用して、複数の構造のツリーを作成し、その結果を合わせて予測を行うアンサンブルという手法が用いられます。本セクションでは、その代表的手法であるバギング・ブースティング・勾配ブースティング・フォレストについて学習します。また、これらのモデルを実装し、チューニング後のスコアの比較を行います。   Week4: Neural

Analytics | Artificial Intelligence | Internet of Things | Machine Learning
AI 분석으로 제조업을 혁신하다: ‘SAS 제조 이노베이션 포럼 2019’

지난 7월 4일 SAS코리아는 광화문 포시즌스호텔에서 국내 제조 산업 관계자를 대상으로 ‘SAS 제조 이노베이션 포럼 2019(SAS Manufacturing Innovation Forum 2019)’을 성공적으로 개최했습니다. SAS는 이번 포럼에서 미국, 독일, 일본 및 국내 제조사들의 고객 사례를 통해 ▲글로벌 B2B 업계의 예측 자산 유지보수 ▲제품 품질 및 투자 수익(ROI) 개선 ▲수요 예측을 통한 생산/판매

Analytics | Artificial Intelligence | Machine Learning
성공적인 비즈니스를 위한 인공지능 전략

인공지능(AI) 기술은 더 이상 공상 과학소설 속 제재가 아닌 기업이 마주한 현실이 되었습니다. 오늘날 기업들은 머신러닝, 알고리즘, 스마트형 커넥티드 제품 등 다양한 AI 기술을 새롭고 흥미로운 방식으로 비즈니스에 적용하고 있습니다. 딜로이트(Deloitte)에서 이러한 인지기술(cognitive technologies)을 적극적으로 도입하는 기업들을 대상으로 진행한 최근 설문조사에 따르면, 응답자 중 76%가 AI를 비롯한 인지기술이 3년 이내에

Machine Learning | Students & Educators
0
オンラインコース「Machine Learning Using SAS Viya」のご紹介(Week1・2)

現在、機械学習が大ブームを巻き起こしており、各種ビジネスへ応用拡大の勢いはとどまるところを知りません。一方で、「“機械学習”という名前は聞くけど、よくわからない…。」、「“機械学習”について学んでみたいけど、プログラミングに自信はない…。」などと考えている方も少なくないはずです。そこで本記事では、煩わしいプログラミングなしで機械学習が学べる「Machine Learning Using SAS Viya」という学習コースについてご紹介します。 「Machine Learning Using SAS Viya」は、オンライン学習プラットフォーム、「Cousera」のコースの一つです。SAS Viya for LearnersというSAS の教育用環境を使用し、オンライン上で実際に手を動かしながら機械学習の基礎を学べます。GUIでの操作が基本であるため、プログラミングに自信のない方でも取り組めることが特徴です。本コースは六週間分のパートに分かれており、無料で教材の内容全ての閲覧が可能です。また、コースを購入すると採点機能の利用や修了証の発行などの機能も利用可能です。コースの言語は英語で、コース内動画は英語字幕に対応しています。 シラバスは以下のとおりです。 Week1:Getting Started with Machine Learning using SAS® Viya® Week2:Data Preparation and Algorithm Selection Week3:Decision Tree and Ensembles of Trees Week4:Neural Networks Week5:Support Vector Machine Week6:Model Deployment 本記事ではWeek1・Week2の内容を各セクションごとにご紹介します。 Week1:Getting Started with Machine Learning using SAS® Viya®

Advanced Analytics | Analytics | Artificial Intelligence | Data Visualization | Machine Learning
SAS Viya: ビジュアルパイプラインでスコアリング

SAS Viyaでは、Model Studioを使用し、機械学習のモデル、時系列予測のモデル、テキストマイニングのモデルをGUIベースの簡単マウス操作で作成することができます。モデル生成プロセスをグラフィカルなフロー図として描き、実行するだけです。このフロー図のことを「パイプライン」と呼んでいます。 「SAS Viya: ビジュアルパイプラインで予測モデル生成(基本編)」では、モデル生成と精度評価の基本的な流れを紹介しましたが、今回は、生成したチャンピオンモデルに新しいデータを当てはめてインタラクティブにスコアリングを実行する手順を紹介します。また、スコアリング結果のデータの探索や、エクスポートまで試してみましょう。 「SAS Viya: ビジュアルパイプラインで予測モデル生成(基本編)」で作成したパイプラインでは、勾配ブースティングのモデルの方が精度が高い=チャンピオンモデルだと判断されました。 それでは、このモデルに新しいデータを当てはめてスコアリングを実行してみましょう。 まず、画面左側の機能ノードリストの「その他」セクション内にある「データのスコア」を「勾配ブースティング」ノード上にドラッグすると、「勾配ブースティング」ノードの下に「データのスコア」ノードが追加されます。 「データのスコア」ノードを選択し、画面右側で以下の項目を指定します。 ・モデルに当てはめるデータテーブル名 ・スコアリング結果データの出力先ライブラリとテーブル名 「データのスコア」を右クリックし、表示されるメニューから「実行」をクリックすると、スコアリングが実行されます。 スコアリング処理が完了すると「データのスコア」ノード上に緑色のチェックマークアイコンが表示されます。 それでは、スコアリング結果のデータを見てみましょう。 「データのスコア」ノードを右クリックし、表示されるメニューから「結果」を選択します。 すると、データのスコアの結果画面が表示され、「出力データ」タブ内で、データの中身を確認することができます。「予測:BAD=1」列に、顧客ごとの延滞確率に相当するスコア値が表示されています。 それでは、このデータを探索してみましょう。 「探索とビジュアル化」アイコンをクリックし、 表示される画面内で、このデータを探索用に保存する先のライブラリとテーブル名を指定し、「探索とビジュアル化」ボタンをクリックします。 すると、このデータに基づき、「SAS Visual Analytics – データ探索とビジュアル化」画面が表示され、データ探索やレポーティングが可能になります。 例えば、スコア値である「予測:BAD=1」変数と「資産に対する負債の割合」変数の関係性を探索したり、 スコア値が0.7以上の顧客データをエクスポートして、二次活用したり、等々も簡単です。 以上のように、SAS Viyaでは、データの準備はもとより、モデル生成からスコアリング、そして、スコアリング結果データの探索からエクスポートまでをGUIベースでシームレスに実施することができるんですね。 ※Enterprise Open Analytics Platform 「SAS Viya」 を知りたいなら「特設サイト」へGO! ※「ビジュアルパイプラインでスコアリング」は、SAS Viya特設サイトにデモ動画を近々公開予定です。

Analytics | Artificial Intelligence | Machine Learning
Héctor Cobo 0
Analítica, un pilar fundamental de la innovación empresarial

Hoy en día, las organizaciones necesitan analítica de alto rendimiento para mejorar todos sus indicadores de negocio, ya no es un lujo: es una necesidad. La transformación digital y el análisis empresarial son una prioridad en la agenda de muchas empresas que buscan destacar en un mundo hiper competitivo que

Analytics | Machine Learning
Sylvie Faucillon 0
Les Bots : nouvelle vague de la 4ème révolution industrielle

Et si, en dehors de la nouvelle organisation des moyens de production, la 4ème révolution industrielle induisait également une évolution significative dans la gestion de la connaissance intrinsèque à chaque domaine ? Et si les nouvelles technologies numériques permettaient aux acteurs opérationnels d’accéder simplement à cette connaissance, le plus souvent fruit de méthodes

Analytics | Machine Learning
David Tareen 0
Malignant or benign? Cancer detection with SAS Viya and NVIDIA GPUs

According to the World Cancer Research Fund, Breast cancer is one of the most common cancers worldwide, with 12.3% of new cancer patients in 2018 suffering from breast cancer. Early detection can significantly improve treatment value, however, the interpretation of cancer images heavily depends on the experience of doctors and technicians. The

Analytics | Artificial Intelligence | Machine Learning
Charlie Chase 0
Is machine learning practical for statistical forecasting?

There's been a lot of hype regarding using machine learning (ML) for demand forecasting, and rightfully so, given the advancements in data collection, storage, and processing along with improvements in technology. There's no reason why machine learning can't be utilized as another forecasting method among the collection of forecasting methods

Analytics | Artificial Intelligence | Machine Learning
0
De la ciencia ficción a la realidad. Aplicación de ofertas personalizadas a clientes desde la Inteligencia Artificial y el reconocimiento de imágenes.

¿Han visto la película Minority Report? En esta se presentan algunas escenas en las cuales John Anderton entra a un centro comercial y mediante el “Sistema de reconocimiento óptico de la ciudad”, la pantalla de publicidad le saluda por el nombre y luego le hace ofrecimientos personalizados de productos. Para

Advanced Analytics | Artificial Intelligence | Machine Learning
SAS Japan 0
ディープ・ラーニングにおける物体検出

この記事はSAS Institute Japanが翻訳および編集したもので、もともとはXindian Longによって執筆されました。元記事はこちらです(英語)。 物体検出とは? 物体検出とはコンピューター・ビジョンの一分野であり、画像内に含まれる関心対象の物体を自動的に背景から区別して位置特定する手法です。例えば、図1に示す2つの画像では、いずれも前景に物体があります。左の画像では鳥が、右の画像では犬と人間が前景にあります。 「物体検出問題の解決」とは、「これらの物体をぴったりと囲むバウンディング・ボックスを配置し、それぞれのバウンディング・ボックスに対して正しい物体カテゴリーを関連付けること」を意味します。画像処理の領域における他のタスクと同様、物体検出を実行するときにもディープ・ラーニングは最先端の手法として力を発揮します。 物体検出の仕組み 物体検出に関する重要な問題の1つは、前景にある物体の数が画像によって様々に異なる、ということです。しかし、ここでは物体検出の仕組みを理解するために、まずは1つの画像に1個の物体しか存在しないと仮定し、この制約条件の下で物体検出問題を考えてみましょう。1つの画像に1個の物体しか存在しない場合、バウンディング・ボックスの発見と物体のカテゴリー判断という問題は、単純明快な方法で解決することができます。バウンディング・ボックスは4組の数値で表現されますから、バウンディング・ボックスの位置を学習するタスクは、回帰問題として無理なくモデル化することが可能です。そのタスクが済めば、物体のカテゴリー判断は分類問題として解くことができます。 ここでの「制約条件付きの物体検出」という課題に関する回帰および分類問題に対する解法を提供するのは、図2に示す畳み込みニューラル・ネットワーク(CNN)です。コンピューター・ビジョンの領域における他の従来型タスク(例:画像認識、キーポイント検出、セマンティック・セグメンテーションなど)の場合と同様、ここでの「制約条件付きの物体検出」という課題では、固定数のターゲットを扱います。これらのターゲットの当てはめは、固定数の分類または回帰問題としてターゲットをモデル化することによって実行可能です。 前述のとおり、真の物体検出はN個の物体を処理できなければなりません(Nの値は画像によって異なります)。残念ながら、図2に示したCNNは、このような、より一般的な問題を解決することができません。しかし、多くの矩形ボックスの位置とサイズについて仮説を立てることによってCNNの変種を使用し、CNNを物体の分類にのみ利用する、というやり方は可能かもしれません。私たちはそのような場合の矩形ボックスを、しばしば「ウィンドウ」と呼びます。ウィンドウ仮説を汎用的なものにするためには、画像内で考えられる全ての位置とサイズをカバーしなければなりません。それができれば、それぞれのサイズと位置のウィンドウについて、「その中に物体が存在するかどうか?」と、「存在する場合、物体のカテゴリーは何か?」を判断することが可能になります。 図3は、このアプローチで物体検出を実現する場合に候補となりうるウィンドウをいくつか示しています。画像は有限個のピクセルで構成されていますから、ウィンドウの総数は膨大です。検討すべきウィンドウの数の膨大さを考えると、このアプローチはコンピューティングの観点からは非実用的です。 ウィンドウを用いて物体を探すための効率的な手法 では、「一部のウィンドウだけを調べる」というスマートな方法で物体検出を実行することは可能でしょうか? 答えは「イエス」です。このような「ウィンドウの部分集合」を発見する方法には2つのアプローチがあり、それらは2つの異なる物体検出アルゴリズムへとつながります。 第1のカテゴリーのアルゴリズムは、最初にリージョン・プロポーザル(領域候補の抽出)を実行します。これは具体的には、コンピューター・ビジョンの従来の手法(選択的検索など)を用いて、あるいは、ディープ・ラーニングに基づくリージョン・プロポーザル・ネットワーク(region proposal network: RPN)を用いて、物体を含んでいる可能性の高い領域を選択する、ということです。候補ウィンドウの少数のセットを収集したら、セットの数だけ回帰モデルおよび分類モデルを定式化することによって、物体検出問題を解決することができます。このカテゴリーに属するアルゴリズムとしては、Faster R-CNN[1]、R_FCN[2]、FPN-FRCN[3] などがあります。このカテゴリーのアルゴリズムは、通常、「2段階法」と呼ばれます。これらは一般に、この後に紹介する「1段階法」に比べ、正確性は優れていますが、処理は低速です。 第2のカテゴリーのアルゴリズムは、固定位置にある固定サイズの物体だけを探します。これらの位置とサイズは、ほとんどのシナリオがカバーされるように戦略的に選択されます。通常、これらのアルゴリズムは、元の画像を固定サイズのグリッド(格子)領域に分割した上で、それぞれのグリッド領域に関して、あらかじめ決めておいた所定の形状およびサイズの、固定数の物体を予測することを試みます。このカテゴリーに属するアルゴリズムは「1段階法」と呼ばれます。この手法の例としては、YOLO[4]、SSD[5]、RetinaNet[6]などが挙げられます。このカテゴリーのアルゴリズムは、通常、より高速に実行できますが、正確性は劣ります。このタイプのアルゴリズムは、リアルタイム検出を必要とするアプリケーションで活用されることが多くなっています。 以下では、これらのうち2つの一般的な物体検出手法を取り上げ、もう少し詳しく検討します。 YOLOによる物体検出 YOLO (You Only Look Once) は、1段階の物体検出手法を用いる代表的なアルゴリズムです。このアルゴリズムが物体を検出するためにたどるステップを、図4とその下の箇条書きに示します。 元の画像を等サイズのグリッドに分割します。 それぞれのグリッドに関して、事前に定義した形状の、グリッドの中心を中心位置とするバウンディング・ボックスを、事前に設定した数だけ予測します。それぞれの予測には、クラス確率と物体信頼度(その領域が物体を含んでいるか、あるいは背景のみか)が関連付けられます。 最後に、高い物体信頼度およびクラス確率が関連付けられたバウンディング・ボックスを選択します。最も高いクラス確率を持つ物体クラスが、その物体のカテゴリーとなります。 事前に定義した形状の事前に設定した数のバウンディング・ボックスは「アンカーボックス」と呼ばれ、k平均法アルゴリズムによってデータから取得されます。アンカーボックスは、物体のサイズと形状についてデータセットから予備知識を捕捉します。異なるサイズおよび形状の物体を検出するためには、異なるアンカーが設計されます。例えば図5では、1つの場所に3種類のアンカーが表示されていますが、最終的には赤のアンカーボックスが中央の人物を検出します。言い換えると、アルゴリズムは、物体とこのアンカーボックスの適切なサイズを一緒に検出します。通常、最終的な予測は、アンカーの位置またはサイズ自体とは異なります。なぜなら、画像の特徴量マップから取得される最適化されたオフセット値が、アンカーの位置またはサイズに加算されるからです。 YOLOアルゴリズムのアーキテクチャを図6に示します。検出層は、多数の回帰および分類オプティマイザーを含んでおり、その数はアンカーの数によって決まります。 Faster RCNNによる物体検出 Faster RCNN[1] は、2段階の物体検出アルゴリズムです。図7は、Faster RCNNの2つの段階を示しています。アルゴリズム名に “Faster” と付いていますが、「1段階法よりも高速」という意味ではありません。この名称は歴史的な経緯を反映しており、以前のバージョン(オリジナルのRCNNアルゴリズム[7] やその後継のFast RCNN[8])よりも高速であることを示しています。Faster RCNNにおける高速化は、個々の関心領域(Region of Interest: RoI)に関する特徴抽出計算を共有する手法と、ディープ・ラーニングに基づくリージョン・プロポーザル・ネットワーク(RPN)の導入によって実現されています。 多数のCNN層を用いて特徴量マップを抽出した後、リージョン・プロポーザル・ネットワーク(RPN)が、物体を含んでいる可能性の高い多数のウィンドウを出力します。その後、アルゴリズムは、各ウィンドウ内部の特徴量マップを取得し、それらを固定サイズにリサイズ(またはポール)することで(=RoIプーリング)、物体のクラス確率とより正確なバウンディング・ボックスを予測します。

Advanced Analytics | Artificial Intelligence | Internet of Things | Machine Learning
Christian Goßler 0
Lenins Werk und Lehmanns Beitrag zum Internet of Things (IoT10)

Lenin ist sauer, saurer sogar, als es Bolschewiken-Art ist. „Ich habe Ihre IoT-Blogs gelesen“, sagt er. Und er ist sauer. Noch auf dem SAS Forum in Bonn hatte er unsere Zusammenarbeit gepriesen und den Stellenwert von Datenanalyse und künstlicher Intelligenz hervorgehoben. Auch Lenins Mitarbeiter waren dort gewesen, die Hornbrillen-Dame und

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning
Makoto Unemi (畝見 真) 0
PythonやRで開発されたモデルの精度をビジュアルパイプラインで簡単比較

データサイエンティスト(以降、DSと表記)は、お好みのプログラミング言語を使用して、日々モデリングを行っています。昨今は、その中でもオープンソースのプログラミング言語であるPythonやRを使用されている方の割合が多くなってきているようです。その結果として、企業の分析組織やチーム内には複数の異なる言語を活用するDSが混在するケースも見受けられます。(一人で両方の言語を操る方もいます。) 「Pythonを操るAさんが作成されたモデルと、Rを操るBさんが作成されたモデル、どちらの精度が高いのかを容易かつビジュアルに比較することができたら…」  ということで、今回は、SAS ViyaのModel Studioを使用し、ビジュアルなパイプライン上での異なる言語間モデル精度比較をご紹介します。  手順は以下の通りです。 ① プロジェクトの新規作成と学習用のデータソース選択 ② パイプラインの作成と実行 ③ 実行結果(モデル精度)の確認 ① プロジェクトの新規作成と学習用のデータソース選択 「SAS Viya: ビジュアルパイプラインで予測モデル生成(基本編)」の「1.プロジェクトの新規作成と学習用のデータソース選択」を参照ください。 ② パイプラインの作成と実行 画面上部にある「パイプライン」をクリックします。 パイプラインには「データ」ノードのみが表示されています。左端の機能ノードアイコンをクリックすると、 パイプラインに追加可能な機能ノードのリストが表示されます。 まずは学習データに対する前処理として、欠損値補完を行います。 「データマイニングの前処理」内にある「補完」を「データ」ノード上にドラッグすると、 「データ」ノードの下に「補完」ノードが追加されます。 同様の手順で、「その他」内にある「オープンソースコード」を「補完」ノード上へドラッグすると、「補完」ノードの下に「オープンソースコード」ノードが追加されます。 機能ノードごとのオプション設定は、右側画面内で行います。 「言語」が「Python」であることを確認し、「開く」をクリックします。 開かれた画面内に、比較対象のPythonのコード(ランダムフォレストのモデル)をコピーします。右上の「保存」(フロッピーディスクアイコン)をクリックし、「閉じる」をクリックします。 ※ターゲット変数名や入力変数リスト名など、画面左側の変数名を使用することによって、オープンソースコードノードとその他のノード間でのデータ連携が可能となり、異なる言語のモデル間での精度比較も可能になります。各種規定変数名の詳細に関しては、オンラインマニュアルを参照してください。 「オープンソースコード」ノードの右側にある3つのドットが縦に並んでいる(スノーマン)アイコンをクリックし、「名前の変更」を選択し、 「Pythonフォレストモデル」に変更します。 このようにドラッグ操作でノードを追加する以外に、パイプライン上のメニューからノードを追加することもできます。 「補完」ノードのスノーマンアイコンをクリックし、「下に追加」>「その他」>「オープンソースコード」の順に選択すると、 「補完」ノードの下に「オープンソースコード」ノードが追加されます。 以降、同様の手順で比較対象のRのコード(ランダムフォレストのモデル)をコピーし、ノードの名前を変更します。 「オープンソースコード」ノードは、データに対する前処理として使用することもできます。デフォルトでは、「オープンソースコード」ノードは、データに対する前処理として認識されているので、これを「教師あり学習」に切り替えます。 PythonとRのモデルノードそれぞれのスノーマンアイコンをクリックし、「移動」>「教師あり学習」を選択します。 すると、「モデルの比較」ノードが追加され、PythonとRのモデルノードと接続されます。 パイプラインが完成したので、右上の「パイプラインの実行」アイコンをクリックし、実行します。 ③ 実行結果(モデル精度)の確認 処理が正常に完了したら、「モデル比較」ノードのスノーマンアイコンをクリックし、「結果」を選択します。 Rのフォレストモデルの方が精度が高い、チャンピオンモデルであると表示されました。 リフトやROC、様々な統計量で、精度を詳細に比較することもできます。 以上が、ビジュアルパイプラインでPythonとRのモデル精度を比較する手順です。 もちろん、必要に応じて、PythonやRのモデルとSASのモデルの精度を比較することもできます。 ※ビジュアルパイプラインでPythonとRのモデル精度を比較は、SAS Viya特設サイトにある動画でもご覧いただけます。 ※実際にPythonとRのモデル精度比較を試してみたい方は、Githubに公開されているアセットを活用ください。

Analytics | Artificial Intelligence | Internet of Things | Machine Learning
Charlie Chase 0
Practical approaches to new product forecasting using structured and unstructured data

When it comes to forecasting new product launches, executives say that it's a frustrating, almost futile, effort. The reason? Minimal data, limited analytic capabilities and a general uncertainty surrounding a new product launch. Not to mention the ever-changing marketplace. Nevertheless, companies cannot disregard the need for a new product forecast

Artificial Intelligence | Machine Learning
Mary Beth Moore 0
NLP for military intelligence

Every day, military intelligence analysts sit behind computers reading a never-ending stream of reports, updating presentation templates and writing assessments. But intelligence is more than documenting events and sharing breaking news. It involves understanding and predicting complexities in human behavior across various organizational constructs and using facets of information to

Artificial Intelligence | Machine Learning | Programming Tips
Augusta Zhang 0
How to spot counterfeit company logos with AI – no SAS programming experience needed

As one of SAS' newest systems engineers, recently joining the Americas Artificial Intelligence Team, I’m incredibly excited to gain expertise in artificial intelligence and machine learning. I also look forward to applying my knowledge to enable others to leverage the advanced technologies that SAS offers. However, as a recent graduate

Advanced Analytics | Analytics | Artificial Intelligence | Internet of Things | Machine Learning
0
¿Hasta dónde podría llegar con la Inteligencia Artificial?

Hablar de Inteligencia Artificial parece muy lejano para algunas personas y para otras es algo que ya se está implementado a una gran velocidad.  En este artículo espero iniciar con una serie de reflexiones y conversaciones acerca de lo que esperamos desarrollar hoy y a dónde queremos llegar en el

1 7 8 9 10 11 18

Back to Top