Data Management

Blend, cleanse and prepare data for analytics, reporting or data modernization efforts

Analytics | Data Management
小林 泉 0
ガウディとサグラダ・ファミリアに学ぶデータ分析基盤アーキテクチャのための原則

前回の筆者ブログ「STEAM教育の進化にみるAI活用に必要な芸術家的思考」において、AI/アナリティクス時代に芸術家的思考が必要だという話をしました。今回はその派生で、AI/アナリティクス時代に作られるデータ分析基盤の作り方について、「時間をかけて大規模に創造する」という点で類似している建築物、そのなかでも、自然摂理・数学・幾何学と芸術を融合された象徴としてのサグラダ・ファミリアとその大部分の設計を担ったガウディの考え方に学んでみようと思います。 ガウディとサグラダ・ファミリアの特徴 終わりがなく常にその時代の人によって継承され・作り続けられる ガウディは、サグラダ・ファミリアを完成という終わりを目指さないものとして考えていたそうです。教会という性質や、建築費を寄付で賄うという性質もあり、またガウディが世の中に残したかった、「象徴」として、建築物の完成・利用されるというアウトカムではなく、時代時代の人々が建築に携わり続けることで象徴としての役割をもたらすことをアウトカムとしたということだと私は個人的に解釈します。これは、誰かが作ったものを使うという一方的な関係性を超え、インクルージョンすなわち関与するという関係性をもたらします。 サグラダ・ファミリアの建設はゆっくりと進む。 なぜなら、私のクライアント(神)は完成をお急ぎではないからだ by ガウディ 自然摂理と数学・幾何学に基づく美しさ サグラダ・ファミリアの棟の形は放物線です。ネックレスを想像してみてください。長さや幅を変えると様々な放物線になることが分かると思いますが、そのような「逆さ実験」を繰り返しそれをさかさまにしてあの様々な棟の形になっています。これは、ガウディが何事も自然法則に基づくべきという考えに基づいています。 放物面は幾何学すべての父 by ガウディ 継続のための象徴性の維持 サグラダ・ファミリアは建築費を寄付に依存しています。そのため継続的に人々・社会の関心を惹き続ける必要があります。 サグラダ・ファミリアの思想に学ぶ、活用されるデータ分析基盤アーキテクチャに役立つ原則 原則①レジリエンスー蓄積するデータは常に変化する 「どのようなデータを蓄積しておいたらいいですか?SASさんの経験に基づいて教えてください」 「いま取得できるデータを全部蓄積しようと思うんです。あとでどれが必要になるかわからないから」 このようなお話をよくお聞きします。データ活用ニーズはマーケットの変化、競合他社の変化などによって刻々と変化していくため、利用データのニーズを気にすることは浸透していますが、一方で見落としがちなのは以下の2点です。 過去のデータは過去しか表していない。たとえば売上データ一つとっても、それは過去の自社の行動・意思決定の結果でしかなく、役に立つときもあれば、目的によっては全く役に立たない場合もある。 今得られているデータや分析に利用できそうなデータは今のテクノロジーで得られうるデータ、今のテクノロジーで分析しうるというデータにすぎない。将来テクノロジーの進化によって、新しいデータ、新しいデータ粒度が取得できるようになったり、また分析テクノロジーの進化によって想定してなかったデータが利用価値を生み出したりする可能性もある。 この2つの前提にたつと、どのようなデータをためるべきかという議論が意味がないわけではありませんが、「それほど」意味がないということが分かると思います。それよりは、システムアーキテクチャの原則として、将来、データのVolume, Velocity, Veriety に対応できるように硬直化しないことに、より注意を払うことが重要です。また、蓄積しておいたデータが結果的に使われないということもあるかもしれませんが、そのこと自体を失敗としてシステムの価値評価としては用いるべきではありません。重要なことはそのような重要でないデータが認識されたときに素早くストレージコストを低減するようなアクションができるという俊敏性なのです。それは最近のはやり言葉でいうと、レジリエンスと言ってもいいかもしれません。 原則②アーキテクト担当は芸術家的思考が大事 筆者自身、これまでデータ分析基盤システムのアーキテクチャを何度も担当してきました。そしてアーキテクトを育てる際にいつも言っていた言葉があります。「アーキテクチャは機械的に決まるものではないよ。意思だよ意思。あなたがやりたいように決めていいんだよ」いま思うと、STEAM教育に新たに加えられた芸術家的思考を唱えていたことになります。もちろん基本的な知識や経験に基づいたうえでですが、なかなか自分勝手にアーキテクチャを決めていいと思っているアーキテクト担当者も多くなく、結果として、様々な過去のしがらみに忖度したスパゲッティ状態の新システムが出来上がることも少なくありません。そのような結果にならないためには、その企業・自分たちの組織・自分自身ととことん向き合って、全体アーキテクチャにその思いを込める、ということが重要になってきます。もちろんコーチとしてはこのアドバイスの仕方では不足でして、もっと言語化してアクショナブルにしないといけないとは思いますが。 0から独創性は生まれない by ガウディ 原則③アーキテクチャ図は美しく 図やダイアグラムで人に何かを伝えるためには、見る際にそれを阻害する雑音となる不要な情報を削り本当に必要な情報のみに研ぎ澄ますという最低限のことだけではなく、見たいという気持ちにさせたり、見てみようと思わせたり、ちゃんと見ようと思わせたり、あるいは言語的な情報理解だけではない、感情を引き起こさせることで正しく記憶されます。幾何学的な対称性などのバランスを整えることは、「本日はお集まりいただきありがとうございます」に匹敵する挨拶レベルの基本行動規範です。さらには、複雑なアーキテクチャと向き合う場合には、数学的・幾何学的な視点で眺めなおすことで、構成要素が変わらなくても、アーキテクチャ図としてのエントロピーを低減し、構造の整理をすることで、オーディエンスの正しい理解・伝達コストを低減することが可能です。また、そのようにできる限り美しさを追求することで、逆に多くの部分が視覚情報として自然なものとなる、すなわち無の情報となることで、本質的に最も注目すべきポイントにオーディエンスの目を向けさせることができます。 原則④アーキテクチャの思想定義が重要 これは、上述の芸術家的思考と関連しますが、いわゆる芸術作品を評価した文章のような、背景・アーキテクトの思いなどをシステム設計思想として言語化し文書化して受け継いでいくことが重要です。芸術作品と同じように、作品=システムだけでは、作者がどのように自己と向き合い、世の中を見て、どのような思想で創造したのかを把握することは難しいです。サグラダ・ファミリアは未完成部分のガウディによる設計書が失われたため、現在の関係者たちはガウディの思想に基づきながら設計をしています。同様に、データ分析基盤システムが変化し続ける中担当者は変わっていきますが、システムの変更・改修の際にその「思想」に基づくことで、一貫性・効率性・投資対効果・透明性を高めることができるでしょう。 原則⑤アーキテクチャの思想定義の象徴化が重要 象徴化というと小難しい印象になりますが、データ分析基盤の「モットー」や「ビジョン」を常に発信していくということです。最近筆者が耳にした良いなぁと思った例を2つほどご紹介します。この2つの例では、情報システム部門のトップが常にこのワードを取引先ベンダーにもユーザーサイドにも宣伝していることが重要です。あらゆるステークホルダーがこのモットー、ビジョン、象徴に軸足を置くことで、そこからさまざまな提案・理解が派生するものの、このシステムに対する取り組みを将来に向けて継続・推進することに大きく役立っています。 「システム部門がボトルネックにならないセルフサービス化」 昨今、セルフサービスばやりですが、このフレーズにはユーザー部門からの並々ならぬプレッシャーと、それにこたえることがIT部門の使命だという企業としての一体となったデータ活用戦略が表現されており、様々な提案活動・意思決定の原則として非常によく機能しています。これによってステークホルダーが一丸となって、同じ世界を目指し続けることを可能としています。 「バッチ処理だけではなく真のリアルタイム処理にも同時に対応したシステム」 ビジネスにおいては、常に新しい技術・知識を関連付けて新しい商品やサービス、ビジネスプロセス、市場を創造していく必要がありますが、ITやAI/アナリティクスが主役の昨今、情報システム部門がそのような新しい技術・知識をユーザー部門に提案することが、外部ベンダーに頼らず自社内でスピーディーにイノベーション・トランスフォーメーションしていくうえで重要になってきます。ITの観点でいち早く世界中の情報を収集し、新しい技術を試し、ユーザー部門からのリクエストにリアクティブに備えるというよりは、プロアクティブに提案していく、こうすることで、データ分析基盤の位置づけや価値を確固たるものにし、継続的な進化をするものとして、持続的な成長をしていくことが可能になります。 原則⑥走りながらの変化を前提とする 筆者は、芸術の創作活動に詳しくありませんが、想像するに芸術作品の多くは、ウォーターフォール型ではなくアジャイル型ではないでしょうか。下書きを何度も繰り返したり、小さな単位の作品を小出しにしたりしながら、最終的にそれらの集大成として一つの大きな創造物が作られることが多いように見受けられます。場合によっては、その時代時代のトレンドに左右されながら、その一連の創造活動が行われる場合もあります。何事もそうですが、アイディアはエクスポーズしてフィードバックを得ながらブラッシュアップすることが最短経路での最大効果を生み出すことが多いです。データ分析基盤も同様です。まずデータを蓄積してそれが完了したら使ってみるというのをシーケンシャルに行おうとするケースがいまだ散見されます。蓄積してみた直後に、「使いたいデータがなかった」という事件は実際に起きています。なので、これはお勧めしません。データの価値は蓄積ではなく活用して始めて判明するからです。使ってもらって修正して、というフィードバックループを早く回して軌道修正をこまめに繰り返しながら進むことが重要です。 あらためて、Think Big, Start Small アナリティクスの世界では古くからある使い古された原則です。以前は、データ活用成熟度が高い企業のみがアナリティクスへの投資に踏み出していたため、他に参考にする企業もあまりなく、弊社がグローバルの知見や海外の先進事例や経験に基づいてお手伝いをしながらも、お客様自身でとことん考えビジョンを掲げ、少しずつ成果を出しながら投資を継続しながら、適用ビジネス、人材、組織共に、徐々に規模を拡大していくというやり方が主流でした。つまり芸術家的思考がやはりその根底にあったと言えます。 一方で、昨今AIブームの中AI市場が急速に拡大し、多くの企業がデータ活用に踏み出しています。そのため巷では、成功例・失敗例があふれ、それを参考にすることで、データ分析のビジネス活用に、組織的・人材育成的、IT投資的に、何か初めから答えがあるかのような錯覚をし、自社をとことん見つめたうえでのビジョンがないままに、手段が目的化し、組織化や人材育成あるいはデータ統合基盤の構築からスタートしようとしているケースをよく見かけます。その結果、人材育成は出来たはずなのにデータ活用によるビジネスの成果につながっていなかったり、データ統合基盤は出来たのに使われていない、データサイエンス組織に人材は集めたが具体的なビジネス適用につながらないといった結果に陥っているケースも見られます。会社の戦略が、自社のXXXというコアコンピテンスに基づき、XXXのようにビジネスを変革する、というものではなく、単に「データドリブン組織になる」「データドリブン経営をしていく」という手段が目的化しているときに、そのような思わしくない状況になるようです。 データ分析基盤のアーキテクチャもそうですが、今一度終わりのないこのデータ活用の取り組みに、ガウディがサグラダ・ファミリアに込めた戦略=芸術家的思考を参考にし、企業・組織の血となり骨となるデータ活用の取り組みの位置づけを考えてみるのはいかがでしょうか。

Analytics | Data Management | Machine Learning
Ernesto Cantu 0
La manufactura necesita del análisis de datos para optimizar y mejorar sus procesos: SAS

En el último año se ha observado la llegada de nuevos inversores extranjeros a México, sobre todo por la parte de la industria manufacturera, que ha traído consigo crecimiento económico para el país. De acuerdo con datos de la Asociación para la Tecnología de Manufactura (AMT, por sus siglas en

Advanced Analytics | Analytics | Data Management
Héctor Cobo 0
53% de empresas e instituciones con brechas en el manejo de resiliencia: encuesta de SAS

Mucho se ha hablado de la importancia que tiene la capacidad de adaptación en las empresas y sus líderes. Se han desarrollado cursos, talleres e implementado diversas fórmulas, sin embargo, recientemente se ha ubicado que el análisis de datos contribuye mayormente a prever y contrarrestar riesgos. Así lo señalan el

Advanced Analytics | Data Management
Cristina Pérez 0
ICEX, SAS y la internacionalización de empresas españolas lideradas por mujeres

Los modelos analíticos se han convertido en un elemento clave para la toma de decisiones en las organizaciones. Sin embargo, para conseguir una modelización óptima, es necesario tener presente una serie de consideraciones y buenas prácticas. Joaquín María Núñez Varo, Analista del Departamento de Evaluación del ICEX España, nos acompañó

Advanced Analytics | Analytics | Data Management | Learn SAS | Programming Tips
Yinliang Wu 0
How to evaluate SAS expressions in PROC DS2 dynamically

Some readers read the article “how-to-evaluate-sas-expression-in-data-step-dynamically” and wonder if there is a same mechanism or functionality in DS2. As indicated in that article, SAS provides similar features in DATA step, PROC CAS and PROC Python, but some projects like ESP (Event Stream Processing) projects would store those expression definition in

Advanced Analytics | Data Management | Machine Learning
Sandra Hernandez 0
Simplicidad, flexibilidad y accesibilidad + tecnología: claves del marketing moderno para mejorar la experiencia del cliente

El objetivo es siempre el mismo: poder desarrollar estrategias de marketing efectivas utilizando las tecnologías correctas para mejorar las experiencias de los clientes y cumplir con sus expectativas. Al hablar de estrategias de marketing efectivas necesariamente estamos haciendo alusión a conceptos como simplicidad, flexibilidad y accesibilidad. Hablamos de simplicidad para

Advanced Analytics | Analytics | Data Management | Fraud & Security Intelligence
Yuri Rueda 0
Fin del Hot sale trae consigo temporada alta de fraudes en sector retail: SAS.

Las temporadas altas de ofertas como el hot sale representan una gran oportunidad tanto para las compañías como para los clientes, pero también para los defraudadores. De acuerdo con SAS, firma pionera y especializada en analítica avanzada, IA y gestión de datos, a medida que aumenta la cantidad de transacciones

Advanced Analytics | Analytics | Cloud | Data Management
Kayt Leonard 0
5 tips for choosing a statistical computing environment

When you think about life-saving technology, does a statistical computing environment come to mind? Statistical computing environments (SCE) are critical in accelerating scientific discoveries by enabling researchers to manage, process and analyze data efficiently and compliantly, maintaining the utmost regulatory integrity. As life sciences research generates increasingly large and diverse

Advanced Analytics | Analytics | Artificial Intelligence | Cloud | Customer Intelligence | Data Management
Antonio Calvo 0
Los datos deberían ser el activo más valioso de la cuenta de resultados de la distribución y empresas de gran consumo

Actualmente los datos de la gran distribución no forman parte de la cuenta de resultados, pero es el activo que deberían monetizar con mayor urgencia. Gracias a este análisis avanzado se puede mejorar el margen de la compañía y aumentar la eficiencia de diferentes procesos. En este artículo vamos a

Advanced Analytics | Analytics | Data Management
Spiros Potamitis 0
How organizations can maximize productivity to maintain their competitive edge

Data science teams are no longer comprised of tiny groups of Ph.D. holders exploring cutting-edge projects. Organizations that wish to stay competitive in their marketplaces today need effective data science teams. A strategy to effectively apply advanced analytics and data science to drive better products, services and decisions has many

Advanced Analytics | Analytics | Cloud | Data Management
José Mutis O. 0
3 tendencias en el desarrollo de analítica y trabajo con datos que ayudarán ante la turbulencia en el 2023

Las previsiones hablan de un 2023 desafiante. Muchos países vivirán tiempos de cambios y de ajustes económicos, de índices de inflación impensados años atrás, de incertidumbres en el manejo de las tasas de cambio y de restricciones a recursos vitales o materias primas producto de las guerras o de las

Advanced Analytics | Data Management
Sandra Hernandez 0
Data Dignity, un reto más para los CMO

En esta era de transformación digital de las industrias, la combinación entre marketing y tecnología (Martech) se ha convertido en una de las principales fuentes de conocimiento, inteligencia y posibilidades de engagement para las empresas. Estos beneficios han venido siendo impactados de diversas maneras configurando una fuerte tendencia en el

Advanced Analytics | Artificial Intelligence | Data Management | Fraud & Security Intelligence
Ivan Fernando Herrera 0
La utilización de blockchain, analítica e inteligencia artificial contra el lavado de activos

Un análisis publicado recientemente en Lexology, un servicio de análisis por internet de diferentes temas que ofrece la firma legal DLA Piper, puso en contexto claro lo que ha venido pasando con tecnologías como blockchain y activos virtuales o criptomonedas, y el impacto que están teniendo como una nueva forma

Advanced Analytics | Analytics | Data Management | Risk Management
Luis Barrientos 0
Modelos internos, clave para la implementación de IFRS 9 bajo las condiciones actuales y futuras del mercado

La aplicación de NIIF 9 (IFRS, sus siglas en inglés), respecto a pérdidas crediticias esperadas (ECL, sus siglas en inglés), ha significado para las instituciones financieras desafíos importantes, los cuales se derivan de la propia naturaleza del estándar, basado en principios. Su esencia e iniciativa reside en poder estimar adecuada

1 2 3 4 33

Back to Top