Move beyond spreadsheets to data mining, forecasting, optimization – and more
SAS' Varun Valsaraj demonstrates how to build a digital assistant for a warehouse space optimization use case.
Move beyond spreadsheets to data mining, forecasting, optimization – and more
SAS' Varun Valsaraj demonstrates how to build a digital assistant for a warehouse space optimization use case.
Adopting analytics and AI in the public sector is changing how governments make decisions. Technology improves the efficiency and transparency of work processes, positively impacting service delivery to increasingly demanding citizens. However, many government organizations still need help fully embracing a data-driven culture. The Covid-19 pandemic is one of the
Cada vez mais as ferramentas de IA apoiam a tomada de decisão e ajudam na criação modelos que identificam tendências e padrões de comportamentos que, juntamente com regras de negócios, permitem que as empresas tomem decisões mais assertivas, seja qual for sua área de atuação. As análises mais avançadas incluem
Estamos quase na Semana Santa o que, por ser uma das épocas em que mais viagens se realizam por todo o país, pode apresentar vários desafios à rede rodoviária e aos sistemas de transporte. A variabilidade nos padrões de movimento durante estas datas acrescenta uma camada adicional de complexidade, o
In the ever-evolving landscape of media, understanding how different generations consume content is crucial. Deloitte's report on Digital Media Trends 2023 sheds light on these generational disparities, highlighting a clear shift towards online experiences among younger audiences. This trend presents both challenges and opportunities for businesses, as they grapple with how
SAS' Julia Florou-Moreno shows you how to use generative AI to build a digital assistant that interacts with a model using natural language conversation.
Rare diseases, often called orphan diseases, affect a small percentage of the population. Despite their rarity, these diseases collectively impact millions worldwide. Being a health care professional who cares deeply about overall patient care, the challenges in diagnosing and treating rare diseases resonate profoundly with me. Limited data availability, dispersed
As nations gear up to transition to more intelligent job prospects, organisations seek to excel in pioneering job markets, particularly in the technology sector. Recognising and harnessing the talents of students is crucial for this to succeed. This means providing the right education, hands-on training, and mentorship from academic and
The cold of winter and holiday gatherings push people indoors, causing a surge in influenza hospitalizations. Years of above-normal temperatures in southern states bring a species of mosquito that carries malaria to the US. Declining childhood immunization rates threaten to allow previously eradicated diseases like measles to become endemic again.
급변하는 대외 환경 변화와 지속 가능한 성장을 위한 금융기관 조기경보시스템의 조건 최근 국내 대외 환경은 경기변동성 증가와 저성장 국면 진입의 가속화로 요약할 수 있습니다. 또한, 최근 30년을 돌아보면 ‘97년 외환 위기, ‘08년 글로벌 금융 위기와 ‘20년 COVID19 팬데믹 등 주기적인 경제위기 발생과 더불어 글로벌 경기 민감도 역시 증가한 상황입니다.
La información certera es la base sobre la que se edifican las empresas, especialmente en un contexto en el que la preparación y la resiliencia son cada vez más importantes. Con el aumento en la cantidad de datos disponibles y la necesidad de aprovecharlos para tener mejores resultados, también hemos
The holiday season has arrived, culminating in celebrations across various cultures. It will be a time of creating a memorable feast that brings family and friends together at the dinner table. No matter what you’re celebrating this holiday season, food will be a part of the equation, including a complex
No Brasil, cooperativas financeiras têm uma estrutura complexa e autônoma, com centrais espalhadas pelo país e milhões de clientes. Essas instituições são muito ligadas ao setor de agronegócio e têm uma proposta diferenciada, na qual seus associados têm acesso a dividendos e linhas de crédito especiais. Sendo assim, elas desempenham
自己組織化とは、自然界において個体が全体を見渡すことなく個々の自律的なふるまいをした結果、秩序だった全体を作り出すこと 2010年から存在した解決アイディアがついに実現可能に 今から遡ること十数年前の2010年頃、支援をしていた大手製造業の会社ではすでにデータ分析スキルの社員間でのばらつきと組織全体のスキルの向上、データ分析作業の生産性の向上、人材のモビリティへの耐性としてのデータ分析業務の標準化が課題となっていました。 当時ご相談をいただいた私を含むSASの提案チームは、SASが提供するアナリティクス•ライフサイクル•プラットフォームを活用することで、その問題を支援できることがすぐにわかりました。つまり、ビジネス課題から始まり、利用データ、データ探索による洞察、データ加工プロセス、予測モデリングプロセス、モデル、そしてそれをアプリケーションに組み込むディシジョンプロセスという、一連のアナリティクス•ライフサイクルにまたがるすべての作業を電子的に記録し、全体のプロセスそのものをモデリングし、利活用することで、自己組織的にナレッジが蓄積され、且つ活用されるということです。 しかし、当時のSASだけではない周辺のIT環境、すなわちPCやアプリケーションアーキテクチャなどのインフラ、データの所在、セキュリティ管理などがサイロ化していること、またSAS以外のModelOps環境もシステムごとにアーキテクチャがバラバラすぎたこと、また、お客様社内のデータリテラシーそのものもまだ課題が多かったため、SASを中心としても、実現にはあまりにも周辺の開発コストがかかりすぎたために、提案を断念しました。 時代は変わり昨今、クラウド技術の採用およびそれに伴うビジネスプロセスの変革と標準化が急速に進んでいます。それに歩調を合わせるように、SASの製品も、上記の当時から市場をリードしてきたMLOpsフレームワークをDecisionOpsへと昇華させ、クラウド技術を最大活用すべく、クラウドネイティブなアーキテクチャおよび、プラットフォームとしての一貫性と俊敏性を高めてきました。そしてついに最新版のSAS Viyaでは、アナリティクスライフサイクル全体にわたり、データからデータ分析プロセス全体の作業を電子的に記録し、管理し、活用することが可能となりました。 自己組織的にナレッジを蓄積活用するデータ分析資産のガバナンス 昨今のデータマネージメントの取り組みの課題 詳しくはこちらのブログをご参照いただきたいのですが、多くのケースで過去と同じ過ちを繰り返しています。要約すると、データ分析文化を醸成したい、セルフサービス化を広めたいという目的に対しては、ある1時点のスナップショットでの完成を目的としたデータカタログやDWH/DMのデータモデル設計は問題の解決にはならないということです。必ず5年後にまた別の担当者やプロジェクトが「これではデータ分析しようにもどのデータを使えばわからない、問題だ、整備しよう」となります。 では解決策はなんでしょうか。 静的な情報を管理したり整備するのではなく、日々変わりゆく、どんどん蓄積され、評価され、改善、進化し続ける、データ分析業務に関わるすべての情報を記録統制することです。つまり、以下の三つのポイントを実現することです。各ポイントの詳細は後段でご紹介しています。 ポイント①あらゆるデータ分析資産(ナレッジ)を管理 ポイント②データ品質管理の自動化・省力化とガバナンス ポイント③社内ソーシャルの力による自己組織的情報の蓄積 まずは、それぞれが何を意味しているかを説明する前に、これらを実現するとどのような世界になるのかをユーザーの声によって示してみたいと思います。 個々の自由にデータ分析をしているユーザーによる行動を記録することで、全体を見渡している誰かがヒアリングや調査をして情報を管理することなく、データ分析がどのように行われているかを管理・共有・再利用が可能となるのです。 誰が、どのような目的で、どのデータを、どのように使用したのか、そしてその結果はどうだったのか? このアプリケーションの出した判定結果の説明をする必要がある。このモデルは誰が作ったのか?どのような学習データを使用したのか?どのようなモデリングプロセスだったのか? よく使用されるデータはどれか? そのデータはどのように使用すれば良いのか?注意事項はなにか? データ分析に長けた人は誰か?誰が助けになってくれそうか? 企業全体のデータ品質はどのようになっているか? データ品質と利用パターンのバランスは適切か?誤った使い方をしているユーザーはいないか? など従来、社内勉強会を開催したり、詳しい人を探し出してノウハウを聞いたり、正しくないことも多い仕様書をひっくり返してみたり、そのようにして時間と労力をかけて得られていたデータ分析を自律的に行う際に重要となる社内ナレッジが、自己組織的に形成されるということです。 「情報資産カタログ」とは~一般的な「データカタログ」との違い このような世界を実現する機能をSASでは、「情報資産カタログ」と呼んでいます。データ分析プロセス全体を管理・検索・関連付け・レポートできるようにするテクノロジーです。一般的に言われる、また多くの失敗の原因になる、「データカタログ」と対比するとその大きな違いが見えてきます。 こちらのブログでも述べましたが、データ分析者がセルフサービスでデータ分析を実践したり、初学者がなるべく自分自身で情報収集して、まずは標準的なデータ分析作業をマスターしたりするためには、既存ナレッジを活用する必要があります。一方で、そのようなナレッジは従来一部の優秀なデータ分析者に聞かないとわからなかったり、あるいはITシステム部門に質問して回答までに長い時間を要してビジネス機会を逸してしまう、という結果を招いていました。 既存ナレッジとは、どのようなデータを、どのような意図で、どのような目的で、どのように使い、どのようなアウトプットを得たかという一連の「考え方とやり方」であり、これは管理者が一時的にデータ分析者にヒアリングして「データカタログ」を整備して終わり、というものではなく、日々データ分析者たちの中で自律的に情報が作られていくものです。 ポイント①あらゆるデータ分析資産(ナレッジ)を管理 SAS Viyaでは、上述のアナリティクスライフサイクル各ステップのオブジェクトがすべて一元的に記録・管理されます。日々、新しく作られるレポート、データ加工プロセス、作成されるデータマートの情報が、自動的に管理され検索対象になっていきます。このようにアナリティクス・ライフサイクルの各ステップをすべて管理することで、データ、そのデータを使用しているレポート、そのデータを使用しているデータ加工フロー、その出力データ、さらにはそれを学習データとして使用している予測モデリングプロセスと作成されたモデル、これらを関連付けて見ることが可能となります。それにより例えば、ある目的に使用するデータを探している場合、参考にする業務名やプロジェクト名で検索をすることで、関連するレポートや、データ加工プロセスにたどり着き、そこから使用データやそのデータの使い方にたどり着くという効率的な情報の探し方が可能となります。 もちろん、この機能は昔からあるインパクト・アナリシス機能として、ITシステム部門が、データへの変更の影響調査ツールとして使用することも可能です。 ポイント②データ品質管理の自動化・省力化とガバナンス データ分析を組織的に行う際に気にすべきポイントの一つは、その正確性です。正しいマスターデータを使用しているか、適切な品質のデータを使用しているかは、最終的なアクションや意思決定の精度すなわち収益に影響します。また、結果に対する説明責任を果たすうえでもアクションに使用したデータの品質は属人的ではなく、組織的に管理されている必要があります。またデータ品質を組織的に管理することにより、データ分析の最初に行っていた品質確認という作業が省力化できます。また、属人的に行っていた品質確認作業も標準化されるため、組織全体のデータ分析作業の品質が向上します。 あるお客様では、DWHに格納するデータのETL処理において施すべき処理が実施されていないというミスがあるものの、データの数やETL処理があまりにも多いためそのミスを発見することが困難であるという状況にありました。網羅的な品質管理および品質レポートによってそのようなミスの発見が容易になります。 ポイント③社内ソーシャルの力による自己組織的情報の蓄積 前述のポイント①により基本的にはデータ分析者個人個人の自律的な活動が自動的に記録され、自己組織的に組織全体のナレッジとて蓄積され共有・再利用可能な状態が作られます。これは、データ分析者個人個人が特に意識しなくても自動的に実現できます。それに加えて、さらに意識的にこのプラットフォームを利用することで、蓄積されるナレッジに深みが増します。 例えば、あるビジネス課題をデータ分析で解決使用する場合のスタートは、「問い」です。上述のアナリティクス・ライフサイクルの一番左のスタートにあるものです。その際には、仮説設定をするためや仮説を検証する目的で、様々な角度から「データ探索」を行います。この初期のデータ探索プロセスは、その後のデータ加工やモデリングの根拠になっているため、ナレッジとしてまた説明責任の材料としてはとても重要になります。必ずしも最終的に使用したデータと同じデータを使うとも限らないので、自動的には他のデータ分析資産とは関連づきません。そのような探索プロセスも下記の図のように、同じプロジェクトフォルダに保存しておくことで、関連オブジェクトとして活用することが可能となります。また、プロアクティブに自信が使用したデータやレポートにコメントや評価を付与することで、より価値の高いナレッジへと育つことになります。 昨今企業内SNSなどで、オフィスツールの使い方などノウハウを共有をされている企業・組織もあるかと思います。それを全社規模のアナリティクス・プラットフォームで行うことで、データ分析に関わるナレッジをユーザー同士で培っていくイメージです。 まとめ 「このデータはこの目的に使えますか?」「あ、それはこの情報がないので使えないんですよ。こちらのデータを私は使ってますよ」データ分析者の間でよく交わされる会話です。この問いにいかに迅速に答えられるかが、データ分析の効率性と正確性を高めます。「情報資産カタログ」はまさにこの問いに答えるための機能なのです。
En la actualidad, el sector sociosanitario se enfrenta a una amplia variedad de desafíos que van desde las largas listas de espera, los colapsos en urgencias, la falta de divulgación o personal sanitario, hasta el agotamiento y el desgaste de una industria que se posiciona como la piedra angular de
Lo vivido por la humanidad en los últimos años transformó la manera en que las empresas interactúan con sus clientes, cambiando sus hábitos, comportamientos y expectativas de forma permanente. En la actualidad, las empresas que han logrado adaptarse a estos cambios en el comportamiento del consumidor son las que tienen
SAS Visual Analytics(이하, VA)의 보다 효과적인 활용을 위해 파라미터의 개념과 용도를 소개해 드린 데에 이어, 이번에는 파라미터의 활용법에 대해 설명드리고자 합니다. 1. 설정 상황 SASHELP의 CARS라는 데이터를 기반으로 상황을 가정해 보겠습니다. CARS 데이터는 총 428개의 관측값과 15개의 변수를 가지고 있습니다. 이 중 Make, Model 등 5개의 범주형 변수를 제외하면 Invoice,
Desde el pasado 1 de enero del 2023, en Guatemala entró en vigor la resolución JM-47-2022 de la Junta Monetaria. Esta, explicaron expertos, constituye el nuevo reglamento para la Administración del Riesgo de Crédito que las entidades financieras reguladas deberán utilizar en el país. Específicamente, el objetivo principal de esta
Katie King has interviewed subjects from many walks of business life for her books: academics, venture capitalists, executives from high-profile brands and telecommunications companies. Among them, one that made a lasting impression was an artist: Ai-Da. King interviewed the artificial intelligence-powered humanoid robot artist for her 2022 book AI Strategy
Can we use Computer Vision (CV) to recognize the identity of over 500 Galapagos sea turtles by using just an image? This was the question asked of SAS by researchers at the Galapagos Science Center (GSC), a joint partnership between the University of North Carolina at Chapel Hill’s (UNC) Center for
In a previous post, we explored the intricacies of panel data regression. We unveiled a range of panel models and demonstrated their application in estimating cigarette demand by using the CPANEL procedure. However, achieving reliable insights in the realm of panel data regression requires addressing practical challenges. These would include
The ability to analyze and derive insights from vast amounts of information is invaluable. As industries increasingly rely on data-driven decision-making, there is a growing demand for professionals with expertise in applied analytics. To bridge this skills gap, academic institutions seek innovative ways to provide students with hands-on experience. Integrating
Today’s consumers don’t want to be talked to; they want to have a conversation. They want to be marketed to as individuals, not as faceless members of the masses. Consumer packaged goods (CPG) organizations, in particular, recognize the value of these conversations. This dialogue – via loyalty programs, promotions, social
In today’s world of financial services, a well-crafted decisioning system is paramount, whether you're dealing with credit risk, fraud prevention, financial compliance, or any other critical aspect. Occasionally, financial services organizations decide whether to buy a risk decisioning system or build one using in-house resources. This quandary demands careful consideration
Much of the discussion around how to manage the advanced forms of artificial intelligence—machine learning, generative AI, large language models—deals with them only as technologies. This is a mistake. Like any employee, AI must be onboarded to learn "how we do things around here." Advanced forms of AI have characteristics
The world’s largest rugby tournament returns for the knockout stages. This blog post explores how probability and simulation can be used to predict likely winners in each of the knockout stages. Team sports are dynamic, time-varying and complex topics to model. When modeling regular competitions, such as domestic leagues, it
Panel data are commonly used in today’s economics research. Panel data regression stands out as a powerful tool that aids in unraveling trends and patterns that evolve over time. This tool is particularly valuable when considering hidden factors in the investigations of cause-and-effect relationships. In this post, you will be
Learn how the %FiniteHMM macro can automatically pre-process input data as well as post-process output tables for finite Hidden Markov Models (HMMs) using PROC HMM.
Las empresas de telecomunicaciones tienen acceso a una gran cantidad de datos de sus clientes, que pueden ser utilizados para mejorar la experiencia del usuario, optimizar las operaciones y generar nuevos ingresos. Sin embargo, muchas empresas del sector aún no han aprovechado completamente el potencial de la monetización de datos.
Las organizaciones saben que modernizarse es una tarea continua y una condición para seguir compitiendo y creciendo en sus respectivos mercados. Cómo abordar el proceso de modernización, sin embargo, requiere una planeación minuciosa, y no está exento de desafíos. Más aún cuando involucra la adopción de tecnologías y procesos de