The Data Roundtable
A community of data management expertsData integration, on any project, can be very complex – and it requires a tremendous amount of detail. The person I would pick for my data integration team would have the following skills and characteristics: Has an enterprise perspective of data integration, data quality and extraction, transformation and load (ETL): Understands
I am currently cycling through a schema-on-read data modeling process on a specific task for one of my clients. I have been presented with a data set and have been asked to consider how that data can be best analyzed using a graph-based data management system. My process is to
In my prior two posts, I explored some of the issues associated with data integration for big data and particularly, the conceptual data lake in which source data sets are accumulated and stored, awaiting access from interested data consumers. One of the distinctive features of this approach is the transition
Integrating big data into existing data management processes and programs has become something of a siren call for organizations on the odyssey to become 21st century data-driven enterprises. To help save some lost time, this post offers a few tips for successful big data integration.
There is a time and a place for everything, but the time and place for data quality (DQ) in data integration (DI) efforts always seems like a thing everyone’s not quite sure about. I have previously blogged about the dangers of waiting until the middle of DI to consider, or become forced
While not on the same level of Rush, I do fancy myself a fan of The Who. I'm particularly fond of the band's 1973 epic, Quadrophenia. From the track "5:15": Inside outside, leave me alone Inside outside, nowhere is home Inside outside, where have I been? The inside-outside distinction is rather apropos