The Data Roundtable
A community of data management expertsTraditional data management includes all the disciplines required to manage data resources. More specifically, data management usually includes: Architectures that encompass data, process and infrastructure. Policies and governance surrounding data privacy, data quality and data usage. Procedures that manage a data life cycle from creation of the data to sunset
Balance. This is the challenge facing any organisation wishing to exploit their customer data in the digital age. On one side we have the potential for a massive explosion of customer data. We can collect real-time social media data, machine data, behavioural data and of course our traditional master and
One aspect of high-quality information is consistency. We often think about consistency in terms of consistent values. A large portion of the effort expended on “data quality dimensions” essentially focuses on data value consistency. For example, when we describe accuracy, what we often mean is consistency with a defined source
Our world is now so awash in data that many organizations have an embarrassment of riches when it comes to available data to support operational, tactical and strategic activities of the enterprise. Such a data-rich environment is highly susceptible to poor-quality data. This is especially true when swimming in data lakes –
It's that time of year again where almost 50 million Americans travel home for Thanksgiving. We'll share a smorgasbord of turkey, stuffing and vegetables and discuss fun political topics, all to celebrate the ironic friendship between colonists and Native Americans. Being part Italian, my family augments the 20-pound turkey with pasta –
.@philsimon says don't treat data self-service as a binary.