Uncategorized

SAS Events | Students & Educators
0
第4回「データサイエンティストのキャリアと活躍のかたち」レポート

データサイエンティストを目指す学生向けのセミナー「データサイエンティストのキャリアと活躍のかたち」の第四回が7/25(木)に開催されました。第一回・第二回・第三回に引き続き、今回も大変多くの学生の皆様に参加していただき、有意義なセミナーとなりました。本記事では、当日の様子についてご紹介します。 本セミナーでは、データサイエンティストのキャリアと活躍の場や、ビジネス上でアナリティクスがどのように活用されるかについて、スピーカーがこれまでの経験をもとに紹介しました。 SHIONOGIにおける開発領域のData Scientistとは? はじめに、データサイエンティストのキャリアについて、塩野義製薬株式会社の木口さんのご講演です。木口さんはSHIONOGIのData Science Groupに所属されている方です。Data Science Groupは主にデータサイエンティストやプログラマーで構成され、生物統計家やデータマネージャーと協業して医薬品開発を行っています。 最初に、医薬品開発におけるデータ活用の様子について紹介していただきました。医薬品開発領域では1つの医薬品が世の中で販売されるまでに、臨床試験を何度も繰り返して仮説を検証します。Data Science Groupは、この過程にデータ活用とデータ駆動型医薬品開発を取り入れています。 医薬品開発で活用されるデータには、生物統計家が仮説の推定・検定を行うための臨床試験データやデータサイエンティストが新たな仮説を設定するためのリアルワールドデータ、仮想臨床試験などをするためのシミュレーションデータがあります。これらのデータを組み合わせて活用して医薬品開発の効率化を行っています。 次にデータサイエンティストに求められる役割とスキルについてです。SHIONOGI医薬品開発領域が考えるデータサイエンティストの役割は、科学的にデータを活用するスペシャリストとして、データ駆動型の業務改善を行い、製品価値最大化のためのデータ駆動型医薬品開発をすることであると伝えていただきました。 また、製品価値最大化のためのデータ駆動型医薬品開発はデータサイエンティストが社内外のデータに基づく仮説の導出をし、その仮説をもとに生物統計家が計画立案をして臨床研究で検証するというサイクルがうまく動くことが理想形であると伝えていただいきました。 この役割を果たすために必要なスキルには、統計理論の知識やプログラミングの技術、ITスキルなどもありますが、木口さんは特にチームの中で自分の思っていることを伝える・相手の意思を受け入れるといった「ビジネススキル」が大切であるとおっしゃっていました。 実際にSHIONOGIの様々な分野の技術を組み合わせた活動事例の紹介をしていただいた最後に、「仕事は、多くの失敗から得たヒントをパズルのように組みあわせ、成功に導くこと」であるというメッセージを学生の皆さんに伝えていただきました。ピースは個人が持つ得意な部分・とがった知識でもあり、それらを組み合わせることで新しい仮説を導くことが役割であるという言葉が印象的でした。 不正・犯罪対策におけるアナリティクスの活用 続いて、不正・犯罪対策の分野おいて活用されるアナリティクスについて、SAS Japanの新村による講演です。 今回の講演では、「不正・犯罪対策」の一例としてマネーミュール(知らずのうちに不正な送金に加担してしまう人)を金融機関とのやり取りから検知する活用例を紹介しました。 怪しいお金のやり取りを不正犯罪の被害者口座から見つけるためには、フィルタリングや異常値検知、機械学習、ネットワーク分析など様々な手段が使われています。それぞれの手段には特徴と難点があるため、SASでは複数の適切な手法を組み合わせて効率的に活用し、高精度な不正検知と新たな不正への対応を実現する(ハイブリットアプローチ)を取り入れています。 後半には、不正検知におけるアナリティクスの特徴をいくつか紹介しました。まず、サービス設計によるモデル・チューニング方針について、 ・本当に不正が起きていて、その不正を予測できる検出率を高める ・本当は不正が起きていないのに、それを不正と予測してしまう誤検知を減らす の両方について考えなければならなりません。また、不正検知はビジネスにおいて対外的な説明を求められるため、誰が見ても検知結果を理解できるような可視化をすることが重要です。さらに、不正対策コストと不正被害額の差を考慮するために経済合理性と理想のバランスが求められることも特徴です。 今回の講演内容はどちらも“データサイエンス”の分野としてイメージが浮かびにくいものだったように思われます。「いい医薬品を開発する」ことや「不正・犯罪を検知する」ためのアナリティクスについて知るきっかけになる、とても貴重な講演でした。 SAS student Data for Good communityの紹介 最後に、学生のデータサイエンスの学びの場としてSAS Student Data for Good communityと Data for Good 勉強会について紹介しました。 Data for Goodとは様々な社会問題に対し、データを用いて解決する取り組みです。今回はData for Goodの具体例としてシアトルの交通事故改善を紹介しました。学生が主体となってこの活動をより推進するため、SASではと「Data for Good勉強会」と「SAS Student

Analytics | Internet of Things
Léonie Valencia 0
Wie das IoT Softwareanbieter und ihre Produktlösungen beeinflusst

Um sich bei IoT-Projekten einen gewissen Erfolg zu sichern, gewinnt die Zusammenarbeit von Unternehmen aus vielfältigen Bereichen immer mehr an Bedeutung. So müssen beispielsweise für die Implementierung einer smarten Produktionsumgebung Hardware-, Software- sowie Infrastrukturhersteller gemeinsam Know-how aufbauen und weiterentwickeln. Das E4TC am Campus der RWTH Aachen beschäftigt sich mit dieser

Advanced Analytics | Analytics | Internet of Things
Jeanne (Hyunjin) Byun 0
2019 상반기 글로벌 분석 전문가들의 SAS 평가 리포트를 공유합니다

SAS는 매년 IDC(International Data Corporation), 가트너(Gartner), 포레스터 리서치(Forrester Research, Inc.) 등 세계적인 분석 기관 및 시장 조사 업체로부터 SAS의 제품과 전략, 시장 경쟁성 등 여러 측면에서 평가를 받고 있습니다. 이러한 애널리스트들의 평가와 조언은 기술 구매를 고려하는 고객들은 물론 SAS의 발전과 혁신에도 큰 도움이 됩니다. 올해 상반기 SAS는 전문가들로부터 어떤 평가를

Data Management
SAS Japan 0
アナリティクス・ライフサイクルにおけるデータ準備 ─ データ準備の重要性

この記事はSAS Institute Japanが翻訳および編集したもので、もともとはIvor G. Moanによって執筆されました。元記事はこちらです(英語)。 Webセミナー「Data Preparation in the Analytical Life Cycle」について このWebセミナーでは「アナリティクス・ライフサイクルにおけるデータ準備」というテーマを取り上げ、データ準備の定義と、このライフサイクルの各ステップについて論じています。最初に現在の市場状況とデータ準備に関する人々の見方を考慮に入れた上で、議論の対象は、アナリティクス・ライフサイクルを構成する様々な領域と、データ準備が果たす役割へと移ります。そして最後に、データ・ガバナンスの役割を検討します。この簡潔版のブログ投稿シリーズでは、同Webセミナーから、いくつかの主題を取り上げて論じています。 データ準備の概念と重要性 「データ準備」とは、アナリティクスやビジネスインテリジェンス(BI)で利用するためのデータを収集/処理/クレンジングする工程に含まれる全てのタスクを指します。したがって、データ準備には、アクセス、ロード、構造化、パージ、結合(ジョイン)、データタイプの調整、フィールド値の整合性チェック、重複のチェック、データの統一化(例:1人の人物に2つの誕生日が存在する場合)などが含まれます。 データの量やソースの数が増えるにつれ、適切なデータ準備を行う取り組みは、コストと複雑性がともに増大していきます。そのため、データ準備は今、市場を形成しつつある新たなパラダイムとなっています。また、データ準備は事実上、セルフサービス型のデータ管理の取り組みと化しています。従来のデータ管理プロセスは、ある程度まではデータ統合および準備を実行できますが、今では、ダイナミックかつ詳細な作業や最終段階の作業に関しては、データ準備ツールを用いてセルフサービス方式で実行されるようになりつつあります。 明らかなことは、データを整形し、アナリティクスに適した状態にする上でデータ準備がますます重要になりつつある、ということです。今では、以前よりも多くの企業がデータドリブン(データ駆動型)を実現しています。それらの企業はデータに基づいて意思決定を行いますから、「データに素早くアクセスし、分析に適した状態に準備できること」が極めて重要です。Hadoopなどのビッグデータ環境は、「それらの環境からデータを移動することが不可能」ということを意味します(が、それは問題とはなりません)。その代わり、「アナリティクス向けにデータを準備する工程の一環として、ビッグデータを適切な場所で適切に処理し、その結果のデータを他のソースと組み合わせること」が重要となります。 したがって、データ準備は、あらゆるアナリティクス・プロジェクトの不可欠な構成要素と言えます。適切なデータを取得し、それを適切な状態に準備することによってこそ、アナリティクスの疑問に対して優れた答えを得ることが可能になるのです。質の低いデータや不適切に準備されたデータを使用すると、分析結果が「信頼に足るもの」になる可能性は低下してしまいます。 アナリティクス・ライフサイクルにおけるデータ準備を理解する アナリティクス・ライフサイクルには「ディスカバリー」および「デプロイメント」という2つの主要なフェーズが存在します。「ディスカバリー」プロセスは、イノベーションを生み出すビジネス上の疑問を提起することによって推進されます。したがって最初のステップは、ビジネスにおいて何を知る必要があるかを定義することです。その後、ビジネス上の疑問は「問題を説明する表現」へと変換され、その結果、予測的アナリティクスを用いてその問題を解決することが可能になります。 そして言うまでもなく、予測的アナリティクスを利用するためには、適切に準備された適切なデータが必要不可欠です。Hadoopや高速化・低価格化するコンピューターといったテクノロジーの進歩により、従来では考えられなかったほど大量かつ多様なデータを蓄積し利用することが可能になっています。しかしながら、この動向は、多種多様なフォーマットのソースデータを結合する必要性や、生データを “予測モデルへの入力として利用できる状態” に変換する必要性を増大させたにすぎません。コネクテッド・デバイスが生成する新しいタイプのデータ(例:マシンセンサー・データやオンライン行動のWebログなど)の出現により、「データ準備」段階は以前にも増して難しい課題領域となっています。多くの組織は依然として、「データ準備タスクに過大な時間を費やしており、場合によっては[全作業時間の]最大80%を占めている」と報告しています。 データ準備は継続的なプロセスである データ探索では、対話操作型かつセルフサービス型のビジュアライゼーションツール群を活用します。これらのツールは、統計知識を持たないビジネスユーザーから、アナリティクスに通じたデータサイエンティストまで、幅広いユーザーに対応している必要があります。また、これらのユーザーが関係性/トレンド/パターンを洗い出し、データに関する理解を深めることを可能にしなければなりません。言い換えると、このステップ(=探索)では、プロジェクト初期の「疑問提起」段階で形成された疑問やアプローチを洗練させた上で、そのビジネス課題を解決する方法についてアイディアの開発とテストを行います。ただし、より照準を絞ったモデルを作成するために変数の追加/削除/結合が必要になる可能性もあり、その場合は当然、「データ準備」を再び実行することになります。 「モデル作成」段階では、分析モデルや機械学習モデルを作成するためのアルゴリズムを使用します。その目的は、データ内に潜む関係性を浮き彫りにし、ビジネス上の疑問を解決するための最良のオプションを見つけ出すことです。アナリティクス・ツールは、データとモデリング手法をどのように組み合わせれば望ましい結果を高い信頼性で予測できるかを特定するために役立ちます。常に最高のパフォーマンスを発揮する唯一万能のアルゴリズムは存在しません。そのビジネス課題を解決するための “最良” のアルゴリズムが何であるかは、そのデータによって決まります。最も信頼性の高い解を見つけるためのカギは実験を繰り返すことです。適切なツールでモデル作成を自動化することにより、結果が得られるまでの時間が最小化され、アナリティクス・チームの生産性が向上します。そして、ここでも再び、さらなるデータが追加される可能性があります。 常に最高のパフォーマンスを発揮する唯一万能のアルゴリズムは存在しません。そのビジネス課題を解決するための “最良” のアルゴリズムが何であるかは、そのデータによって決まります。 「実装」段階へ もちろん、モデルの作成が済んだら、それらをデプロイ(=業務システムに組み込んで運用)する必要があります。しかし、その後も「データ準備」の取り組みは停止しません。モデルの良否はそれが利用するデータに左右されるため、モデル(およびデータ)については鮮度を維持し続けなければなりません。データ準備とデータ管理は、極めて継続的なプロセスなのです。

Data Management
SAS Japan 0
アナリティクス・ライフサイクルにおけるデータ準備 ─ ガバナンス、品質、準備

この記事はSAS Institute Japanが翻訳および編集したもので、もともとはIvor G. Moanによって執筆されました。元記事はこちらです(英語)。 Webセミナー「Data Preparation in the Analytical Life Cycle」について 我々は最近、「アナリティクス・ライライクルにおけるデータ準備」に関するWebセミナーを録画しました。このセミナーでは、データ準備の定義と、アナリティクス・ライフサイクルの各ステップの概要を押さえた上で、現在の市場状況とデータ準備に関する人々の見方を確認します。その後、議論の対象は、アナリティクス・ライフサイクルを構成する様々な領域と、データ準備が果たす役割へと移ります。そして最後に、データガバナンスの役割を検討します。 この簡潔版のブログ投稿シリーズでは、同Webセミナーから、いくつかの主題を取り上げて論じています。 昨今では、欧州連合(EU)の「一般データ保護規則(General Data Protection Regulation: GDPR)」やその他の規制の結果として、データ管理に関する新たなガバナンス要件が出現しています。これらの要件はデータ準備プロセスに対し、いくつかの興味深い影響を及ぼしています。この投稿はデータ準備に関する投稿シリーズの第3弾であり、この分野に見られる最近の変化と、それらが業務にどのように影響を与えているかに注目します(シリーズ第1弾はこちら、第2弾はこちら)。また今回は、「アナリティクス・ライフサイクルにおけるデータ準備」工程を整備する取り組みに関して、いくつかの重要な教訓を引き出します。 データガバナンスは必須であり、「データ準備」工程もその対象である これは非常に重要なポイントです。データ準備は、多くの企業や組織にとって目新しい領域かもしれません。特に、これを独立した領域として扱うアプローチに関しては、馴染みが薄いでしょう。しかしながら、データ準備のプロセスが組織のデータガバナンス・プロセスおよびルールに準拠しなければならない点が変わるわけではありません。これはデータ統合/データ管理ソリューションにも当てはまります。言い換えると、全てのデータ関連プロセスは、組織の総合的なデータガバナンス・プロセスに適合しなければなりません。 データ準備はなぜ重要なのでしょうか? 第一の理由は、アナリティクスの取り組みの大部分が、アナリティクス・ライフサイクル全体にわたって様々なユーザーグループ(例: IT部門、データサイエンティスト、ビジネスユーザー)の協働作業によって行われるからです。全てのユーザーが同じデータと同じ原則を用いて作業する必要があり、さもないと、分析モデルの作成結果は、最良の場合でも「あいまい」となり、最悪の場合は「全くの的外れ」となりかねません。 ガバナンスは用語集の整備を促進し、透明性の向上を実現することができます。 このコラボレーションは、データガバナンス原則に従わなければならず、また、この原則によって推進されなければなりません。これは言い換えると、データガバナンスは、このプロセス[=アナリティクス・ライフサイクル]の重要な構成要素であり、また、相互協力や協働作業の向上を実現するために活用されるべきである、ということです。データガバナンスは決して、「ありとあらゆる手を尽くして克服または迂回する必要のある障害物」と見なされるべきではありません。 ガバナンスは用語集の整備を促進し、透明性の向上を実現することができます。これは実際問題としては、「毎日データを用いて作業するわけではない非技術系のビジネスユーザーでも、自律的に取り組むことができ、セルフサービス操作でデータ品質を心配することなく必要な情報を取得できるようになる」ということを意味します。また、組織の側では「全てのユーザーが高品質なデータを取得していること」、そして「データが法的または倫理的な要件に則して適切に利用されていること」を確信できるようになります。 データ準備は継続的なプロセスである データ探索では、対話操作型かつセルフサービス型のビジュアライゼーションツール群を活用します。これらのツールは、統計知識を持たないビジネスユーザーから、アナリティクスに通じたデータサイエンティストまで、幅広いユーザーに対応している必要があります。また、これらのユーザーが関係性/トレンド/パターンを洗い出し、データに関する理解を深めることを可能にしなければなりません。言い換えると、このステップ(=探索)では、プロジェクト初期の「疑問提起」段階で形成された疑問やアプローチを洗練させた上で、そのビジネス課題を解決する方法についてアイディアの開発とテストを行います。ただし、より照準を絞ったモデルを作成するために変数の追加/削除/結合が必要になる可能性もあり、その場合は当然、「データ準備」を再び実行することになります。 セルフサービスとデータ準備 したがって、現代のデータ準備ツールは、セルフサービスを加速できるようにデータガバナンス機能と緊密に連携しなければなりません。セルフサービス・アナリティクスが機能するのは、セルフサービス型のデータ準備環境と一緒に運用される場合のみです。残念なことですが、「セルフサービス・アナリティクスへのアクセスを与えられても高品質なデータを利用できない状況に置かれたビジネスユーザーは、利用できるソースが何であれ、そこから単純に品質を検討することなく、自身が必要とするデータを引き出すだけであり、その場合でも結果は良好だろうと思い込んで疑わない」というのは真実です。また、アナリティクス・ライフサイクルが真に機能するのは、あらゆる場所にセルフサービスを整備した場合のみです。 したがって、「アナリティクス・ライフサイクルにおけるデータ準備」については、2つの重要なメッセージがあります。 恐らく最も重要なのは、アナリティクス・ライフサイクルは統合型のプロセスである、と理解することです。このプロセス内で活動するユーザーグループは多岐にわたり、このライフサイクルの様々な段階で運用されるツールも多種多様です。そのため、「調和のとれたコラボレーション」と「各段階間の遷移の容易さ」が極めて重要なのです。 恐らく最も重要なのは、アナリティクス・ライフサイクルは統合型のプロセスである、と理解することです。 私は、アナリティクスとデータ準備 ── ここでの「データ準備」とはデータ品質、データ統合、データガバナンスを確保するプロセスを意味します ── の両方をカバーする統合アナリティクス・プラットフォームこそがアナリティクス・ライフサイクル全体を促進する、と考えます。これは非常に重要なポイントです。アナリティクス・プロセスを加速したいとお考えのお客様の場合は特に、統合プラットフォームが優れた効果を発揮します。 第二の重要ポイントは、データガバナンスが担う中心的役割です。私の経験によると、ガバナンスは、アナリティクス・ライフサイクル内でセルフサービスを実現するために不可欠なサポート機能です。ユーザーが自立して行動し、例えば用語集を利用して、あるいはメタデータ管理機能を通じて、利用したいデータや適切なコンテキストに即したデータについて自身が必要とする知識を入手できる、ということは極めて重要です。したがって、ガバナンスはアナリティクス・ライフサイクルの必要不可欠な構成要素である、と言えるのです。 詳しい情報については、「アナリティクス・ライフサイクルにおけるデータ準備」について論じているWebセミナー(英語)をご覧ください(視聴にはユーザー登録が必要です)。

Analytics | Internet of Things
Léonie Valencia 0
Was Digitalisierung für Miele bedeutet

IoT-Projekte zeigen durch ihre Vielseitigkeit immer wieder, wie wichtig heutzutage die interdisziplinäre Zusammenarbeit und Partnerschaft zwischen Unternehmen ist. Gerade das Zusammenspiel der Bereiche Hardware, Software und Forschung muss abgestimmt sein, soll der Erfolg gesichert werden. Das E4TC am Campus der RWTH Aachen bringt genau diese Bereiche zusammen und fördert mit

Analytics | Risk Management
Matthias Piston 0
Der Stress ist vorprogrammiert: EBA-Methodikentwurf für den Stresstest 2020 steht

Nach dem Stresstest ist vor dem Stresstest. Getreu diesem Motto können (oder besser gesagt: müssen) sich Banken auf die regelmäßige Übung vorbereiten. Nachdem die Ergebnisse des Stresstests 2018 bekannt gegeben wurden hat die Europäische Bankenaufsichtsbehörde (EBA) am 25. Juni 2019 die Methodik für den nächsten zur Diskussion gestellt. Man kann

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning
Charlie Chase 0
How do I explain a flat-line forecast to senior management?

How do you explain flat-line forecasts to senior management? Or, do you just make manual overrides to adjust the forecast?    When there is no detectable trend or seasonality associated with your demand history, or something has disrupted the trend and/or seasonality, simple time series methods (i.e. naïve and simple

Analytics | Internet of Things
Léonie Valencia 0
IoT, Manufacturing und Digitalisierungstrends

Bei einem IoT-Projekt im Bereich Manufacturing geht es in erster Linie darum, die Produktionsumgebung „smart“ zu gestalten. Das bedeutet, die Anlagen müssen mit Sensoren ausgestattet und passende Softwarelösungen implementiert werden, eine IoT-Infrastruktur muss her. Darüber hinaus müssen Wege gefunden werden, um Daten zu sammeln, zu lagern und zu analysieren. In

Data Management
SAS Japan 0
アナリティクス・ライフサイクルにおけるデータ準備 ─ 準備作業のトレンド

この記事はSAS Institute Japanが翻訳および編集したもので、もともとはIvor G. Moanによって執筆されました。元記事はこちらです(英語)。 Webセミナー「Data Preparation in the Analytical Life Cycle」について このWebセミナーでは「アナリティクス・ライフサイクルにおけるデータ準備」というテーマを取り上げ、データ準備の定義と、このライフサイクルの各ステップについて論じています。最初に現在の市場状況とデータ準備に関する人々の見方を考慮に入れた上で、議論の対象は、アナリティクス・ライフサイクルを構成する様々な領域と、データ準備が果たす役割へと移ります。そして最後に、データ・ガバナンスの役割を検討します。この簡潔版のブログ投稿シリーズでは、同Webセミナーから、いくつかの主題を取り上げて論じています。 この投稿は、アナリティクス・ライフサイクルにおけるデータ準備の役割に関するWebセミナーに基づく投稿シリーズの第2弾です。第1弾では、データ準備がアナリティクス・ライフサイクルの中にどのようにフィットするかを論じました。この投稿では、データ準備に関するいくつかのトレンドと、その結果として進化を遂げた構造やプロセスのいくつかを取り上げて検討します。現在のデータ準備パターンの形成を推進してきた主な課題は2つあります。それは、顧客需要に関する課題とデータ品質に関する課題です。 顧客需要 データ準備に関する現状の大部分は、データ量とデータソース数の増大によって推進されています。ビッグデータの出現は、データ・フォーマットの種類の増加や、ソーシャルメディアやマシンセンサーのような新しいデータソースの出現と相まって、データの保管や利用が難しくなることを意味しました。それと同時に、組織や企業は「意思決定をサポートするためにデータを効果的に活用することが、ますます必要不可欠になっている」ということを認識するようになりました。 ユーザーはより一層多くのデータを必要としています。彼らは手元のデータと外部のデータの両方を分析に含められるようになりたいと考えています。セルフサービスの人気が高まっているのは、柔軟性と自律性が高く、より低コストで、より高速であることに加え、統制も容易だからです。また、他の部門のために行う作業が減少します。 ガードナー社は以前、次のようにコメントしました。「セルフサービス型のデータ準備ソフトウェアの市場は、2019年までに10億ドル(1,100億円、1ドル110円換算)に達し、16.6%の年間成長率を示すと想定されます。潜在的なターゲット・ユーザーにおける現在の導入率は5%であり、これが2020年までには10%以上に成長すると想定されます。ベンダーは自社のビジネス戦略を計画する際に、この市場機会を理解しなければなりません」。しかしながら、セルフサービスのこうした急速な普及は、データサイエンティストにとって頭痛の種を生み出します。セルフサービスは高品質なデータ準備を必要としますが、残念ながら、それには時間がかかり、近道はほとんど存在しません。 データ準備工程からアナリティクス工程へのスムーズな遷移は極めて重要です。その実現には強力なアナリティクス機能とビジュアライゼーション機能が必要となりますが、ユーザーが必要な情報をデータから素早く引き出せるようにするためには強力なデータ管理も必要です。 データ準備工程からアナリティクス工程へのスムーズな遷移は極めて重要です。その実現には強力なアナリティクス機能とビジュアライゼーション機能が必要となりますが、ユーザーが必要な情報をデータから素早く引き出せるようにするためには強力なデータ管理も必要です。動きの速い市場では、俊敏な企業になる必要があります! こうした状況を受け、多くの企業では、データ準備やソフトウェア・エンジニアリングを担当するデータエンジニアという新たな職務役割が台頭しています。データエンジニアの仕事は、分析モデルの作成を行うデータサイエンティストにデータを渡す前に行われます。 データ品質の重要性 この新しい台頭中のデータエンジニアという仕事の役割は、データ品質が不可欠であるという事実の認識が広がっていることの証と言えます。言い換えると、データ管理とは、データの収集や整形を行うことだけでなく、データの品質が適切である状態を確保することでもある、ということです。したがって、データ品質は、データ準備の領域においても必要不可欠なテーマとなりつつあります。 SASは以前から、この領域の先頭を走り続けてきました。我々は相当以前から、「データ準備は単なるデータ読み込みに留まらない工程であり、データ品質の問題も含める必要のある工程である」と認識していました。アナリティクス手法はその入力として、価値の高いデータを必要とします。入力データがクリーンかつ高品質でない場合、出力はそれに応じて劣悪なものとなります。なぜなら、アナリティクス手法には、「ゴミを入れれば、ゴミしか出てこない」という格言がまさに当てはまるからです。 入力データがクリーンかつ高品質でない場合、出力はそれに応じて劣悪なものとなります。なぜなら、アナリティクス手法には、「ゴミを入れれば、ゴミしか出てこない」という格言がまさに当てはまるからです。 データの確認と修正 例えばSAS® Data Preparationでは、ユーザーは、どのようなデータがインポート済みで、どのようなデータが利用できるかを見ることができます。ユーザーはデータのサンプルを見てその感触を得ることができ、初見の段階で全てが一目瞭然です。しかも、ユーザーはデータ・プロファイルを見れば、もう少し詳しい情報を確認することもできます。プロファイルには、データが様々な形態で保管されている(例:正式名称と略語が混在している)という情報が示される可能性があります。こうしたデータ状態は、分析モデルに深刻な問題を引き起こしかねないため、複数の異なるデータソースを統合する前の段階で解決されなければなりません。 したがって基本的には、そのデータには今すぐ修正や標準化が必要です。この目的のために利用できる可能性のある解決手段は、いくつも存在します。例えば時系列分析の場合、我々はデータをフィルタリングし、欠損値を含む全ての項目を除去することができます。あるいは、データの表記法に一貫性がない場合には、異常値や重複を除去するために、そのデータを訂正およびクレンジングする必要があります。こうした操作の全てがデータ準備の重要な構成要素であり、それに関する認識と重要性がともに高まり続けているのです。 将来に向かって進むために これら2つの領域(顧客需要とデータ品質)は、データ準備とデータ管理の領域において、および、そこで利用可能なツールにおいて、近年の発展を非常に強力に推進してきました。セルフサービス型のツールは、ますますユビキタスな存在となっており、データ品質を確保する機能要素との組み合わせによって、あらゆる領域で最良のソリューションを実現しています。 次回の投稿では、データ管理に関する新たな規制やガバナンス要件を取り上げます。  

1 64 65 66 67 68 255