All Posts

Analytics | Learn SAS | Students & Educators
Cinzia Gianfiori 0
Certificazioni SAS e SAS Academic Specialization per favorire il contatto tra giovani studenti e aziende

Nel corso degli anni SAS ha costruito una solida partnership con il mondo accademico. Oggi collaboriamo con più di 40 università italiane e siamo presenti all’interno di percorsi di studio per formare giovani studenti e studentesse su temi come analytics, intelligenza artificiale e machine learning, stimolando la loro curiosità, il loro senso

Analytics | Customer Intelligence
Fernanda Benhami 0
Cultura data-driven e personalização do relacionamento com o cliente

Maturidade de cada setor é diferente, e usar dados de todos os canais, de forma conjunta, ainda desafia gestores As abordagens de uso da tecnologia para relacionamento com o consumidor já são bem conhecidas por organizações que buscam estabelecer uma melhor experiência do cliente e mais eficiência operacional. Este conjunto

Programming Tips | SAS Administrators
0
SAS Enterprise Guide에서 Github 연결하기

SAS Enterprise Guide(이하 SAS EG)의 최근 버전에서는 기존의 폴더를 통한 접근뿐만 아니라 GitHub 레파지토리를 등록하여 프로그램을 실행, 수정, 관리할 수 있습니다. 회사나 개인 용도로 GitHub을 사용하고 있을 경우, SAS EG에 레파지토리를 등록하여 사용이 가능합니다. 기존에 SAS EG와 GitHub을 사용하는 분이라면 EG를 통해서 좀 더 효율적이고 편리하게 작업을 하실 수 있습니다.

Analytics | Cloud
Lindsay Marshall 0
Designing the perfect cloud solution for you

When organizations move to the cloud with a SAS-managed offering, SAS takes care of the design and delivery of software, infrastructure and services so that our customers can focus on using analytics to solve business challenges and see a quick return on investment. That’s where Michael Watson and his team of Technical Architects come in. Michael

Analytics
SAS Hackathon 2023 / チームSunny Compass参加報告

本記事では、Sunny Compass - analysis and suggestion of life satisfactionについて、チームメンバーに直接お話を聞き、背後にある思いやチャレンジなどについて解き明かします。 ユニークなチーム結成 チームSunny Compassは経済産業省主催のDX人材育成プログラム「マナビDX Quest 2022」(以下、マナビDX Quest)で出会ったメンバーで構成されるシビックテック・チームだ。 勤務先や居住地もまったく異なる中、オンライン上で交流し、それぞれの強みや専門性を活かしてデータとテクノロジーを使った課題解決に取り組んでいる。   SAS Hackathon 2023 参加の背景 SAS Hackathonが開催されるという話を聞き、どのようなテーマで取り組むかメンバー全員で話し合った。彼らにとって今回が初めての「ハッカソン」参加となったが、「人生の明るい方向を示す羅針盤になる」という想いをチーム名に込めたチームSunny Compassにとって、人々のウェルビーイングの向上を助ける取り組みをすることはメンバー全員が一致するところだった。データは自前で用意する必要があったため、内閣府の生活満足度調査データを使うことにした。 生活満足度調査の分析結果を可視化するモバイルアプリの開発をゴールに設定しました。ユーザーがアプリ上で性別、年齢、そして生活満足度を入力すると、自分が生活満足度の観点でどのくらいの位置にあるのかが分かり、どのような項目・活動に気を配ると更に生活満足度を向上させ得るのか、という改善に向けたヒントを得られる、というものです。   生活満足度調査データを使用するためには、内閣府に書面申請をする必要があった。書類審査に1週間程度要したが、市民に有益なアプリ開発のために利用するという点が評価され、無事データの提供を受けることができた。   ハッカソンに取り組む上で直面した様々な課題   初めての経験 最大の課題は、メンバー全員がハッカソンと呼ばれるイベントに参加するのは初めてであり、ハッカソンではどのようなことをすれば良いのか全く想像がついていなかったという点だった。また、メンバー全員がSAS製品を使ったことがなかったこと、モバイルアプリの開発も初めてだったこと、などがその他の課題として挙げられた。 完全リモートでのコミュニケーション メンバー全員が対面での面識が全くないところからのスタートだった。そのためグループチャットツールで頻繁に集まり、会話ベースで進捗やタスクを確認し合った。プロジェクトマネジメントの観点でタスクの洗い出しをして割り振るなどということよりも、口頭・テキスト問わずコミュニケーションを密に行って、動ける人が動く、全員が各自今抱えている問題について理解し助け合う、励ます、ということを重視した。 マナビDX Questの経験から、メンバー同士助け合うことが何よりも重要ということを全員が理解していたのと、メンバーごとに関連技術の知見・経験が少しずつあって、それを随所随所でうまく活かしたり、メンターの人が付いてくれて質問などに対応してくれたので何とかなりました。 具体的な取り組み内容 オープンデータを活用 内閣府による生活満足度調査のデータには、個人からの回答に基づき、様々な変数とともに、生活満足度が数値で表現されている。満足度が高いほど値が大きくなる。全体的に欠損値が多数含まれていたため前処理が必要だった。 これとは別にe-Statから取得した「都道府県・市区町村のすがた(社会・人口統計体系)」というデータも使用した。こちらには都道府県ごとの人口、世帯数、ヘルスケア関連情報、などが入っている。   モバイルアプリ メインのモバイルアプリの開発では、「どのような項目・活動が生活満足度の向上に役立つのか」という問いに答えられるよう、生活満足度を目的変数とした機械学習モデルを作成した。この機械学習モデルには変数ごとに変数重要度を出力できるタイプのものを採用し、最終的に変数重要度が高い順に上位5つまでの変数(重要変数)を取り出した。これらの重要変数をREST API経由でモバイルアプリから読みに行くという仕組みを作った。 SAS ViyaはREST APIに標準対応しているのでこういった仕組みづくりも無理なく進められました。 モバイルアプリ自体はオープンソースライブラリを利用して開発した。アプリの想定利用ユーザーは個人ということにした。ユーザーがアプリ上で性別、年齢、そして生活満足度を入力すると、類似の属性を持つ人の中で自分が生活満足度の観点でどのくらいの位置にあるのか、ということが可視化され、加えてどのような項目・活動に気を配ると更に生活満足度を向上させ得るのか、という改善に向けたヒントを取得できるようにした。 可視化ダッシュボード 次に可視化ダッシュボードの作成では、想定利用ユーザーを国や自治体の政策立案担当者とし、個人単位ではなくマクロ的な視点でデータを深堀りするための分析ツールというコンセプトに基づいて開発を進めた。モバイルアプリと同じ生活満足度調査データを使っているが、こちらは都道府県ごとに集計し直し、更に都道府県別の統計情報を加味するため、e-Statのデータと結合させたうえで利用した。

Innovation | Internet of Things | Machine Learning
Bryan Saunders 0
The strategic importance of predictive maintenance in industrial operations

Organizations with a passion for quality, reliability, efficiency and safety are using real-time insights generated from AI-powered predictive maintenance programs to anticipate and avoid potential issues while mitigating negative impact. A shift from reactive maintenance, or handling issues in real-time, is not just a technological evolution; it's a strategic decision.

Learn SAS | Machine Learning
Sharad Saxena 0
New SAS Training Course: Statistics You Need to Know for Machine Learning

Developing an accurate understanding of statistics will help you build robust machine learning models that are optimized for a given business problem. SAS launched a new course that provides a comprehensive overview of the fundamentals of statistics that you'll need to start your data science journey. This course is also a prerequisite to many courses in the SAS data science curriculum.

Advanced Analytics | Analytics
Alexandre Carvalho 0
Analytics como parceiro na evolução das cooperativas de crédito

No Brasil, cooperativas financeiras têm uma estrutura complexa e autônoma, com centrais espalhadas pelo país e milhões de clientes. Essas instituições são muito ligadas ao setor de agronegócio e têm uma proposta diferenciada, na qual seus associados têm acesso a dividendos e linhas de crédito especiais. Sendo assim, elas desempenham

Data Visualization | SAS Administrators
0
알아 두면 유용한 SAS Viya 4의 편리한 기능 – Logging & Monitoring

클라우드 기반 AI 분석 플랫폼인 SAS Viya 4에는 여러 가지 유용한 기능이 있습니다. 이번 글에서는 SAS Viya 4를 위한 Logging & Monitoring 기능에 대해 소개 드리겠습니다.   1. Logging & Monitoring 이란 무엇인가? Logging과 Monitoring은 해석 그대로, 해당 서비스에 대한 로그 기록과 상태를 시각적으로 표시해주는 것을 의미합니다. 기존 SAS Viya

Analytics | Learn SAS
Rick Wicklin 0
What is polychoric correlation?

Correlation is a statistic that measures the association between two variables. When two variables are positively correlated, low values of one variable tend to be associated with low values of the other variable. Medium values and high values are similarly associated. For negative correlation, the association is flipped: low values

1 34 35 36 37 38 709