"Senior managers adore their dashboards. Are they really capable of understanding what they indicate? I have my doubts!"
Search Results: Visual Analytics (1617)
In this blog, I use data from the U. S. Department of State Trafficking in Persons (TIP) reports for the years 2013-2017 to accomplish these objectives: 1) To determine what are the main themes in TIP reports, and 2) to show how to work with ASTORE code to deploy models using SAS Viya 3.4 Visual Text Analytics 8.4.
Put simply, data literacy is the ability to derive meaning from data. That seems like a straightforward proposition, but, in truth, finding relationships in data can be fraught with complexities, including: Understanding where the data came from, including the lineage or source of that data. Ensuring that the data meet compliance
「ビジュアルパイプラインで将来予測」では、SAS ViyaのModel Studioを使用した時系列予測の基本的な手順を紹介しました。 今回は、需要予測の精度を高める代表的な一つの手法として、需要分類をご紹介します。 例えば、お菓子の販売に関する需要を予測する場合を考えてみましょう。 ポテトチップスやおかきのように通年を通して売れる商品もあれば、アイスクリームのように夏季に需要が増加する商品、チョコレートのようにバレンタインデーの直前と当日に需要が急増する商品、お盆やお彼岸などの際にお供え用にときどき購入される商品などなど、お菓子の種類によって需要のパターンは異なってきます。 これらの異なる需要パターンの商品に対して、一律同じアルゴリズムを適用しても予測精度は高まりません。 こうした課題に対処するために、SAS Viyaの時系列予測では、自動的に需要のパターンを分析し、予測の精度を高めるような仕組みも搭載されています。 SAS ViyaのModel Studioで時系列予測を実行する際に、需要分類を活用する場合は、「需要の分類」テンプレートを使用します。 (使用する時系列データやデータ内の変数に対する役割設定内容は、「ビジュアルパイプラインで将来予測」ブログ内容と同様です。) 以下は、「需要の分類」パイプライン・テンプレートを選択し、実行した後の画面です。 「需要の分類プロファイル」ノードでは、統計解析等の手法を使用して、時系列データを解析し、需要のパターンを検出します。冒頭にお話しした通り、予測対象によって需要のパターンは様々です。 こうした多様なパターンを見極めた上で、適した予測アルゴリズムを用いることが肝要になります。 今回のデータでは、地域×製品ラインのセグメントごとに需要のパターンが検出され、分類されます。 「需要の分類プロファイル」ノードのメニューから「開く」を選択すると、 分類結果が表示されます。 地域×製品ラインでは、5つの組み合わせ=セグメントが存在するので、これらのセグメントごとにパターンが検出され、結果としては、1つのセグメントは「YEAR_ROUND_NON_SEASONAL:長期間の非季節性需要」として、4つのセグメントは「YEAR_ROUND_SEASONAL:長期間の季節性需要」として分類されていることがわかります。 上記の2種類を含め10種類の需要パターン+その他、に分類されます。 次の「需要の分類モデリング」ノードでは、分類されたセグメントごとに最適なアルゴリズムが選択され、予測が実行されます。 「需要の分類モデリング」ノードのメニューから「開く」を選択すると、 実行結果が表示されます。検出された需要パターンに応じて、最適なアルゴリズムを適用したパイプライン(以下の「パプライン」列)が選択され、実行されます。 「YEAR_ROUND_NON_SEASONAL:長期間の非季節性需要」のセグメントには「非季節予測」モデルのパイプライン・テンプレートが適用され、「YEAR_ROUND_SEASONAL:長期間の季節性需要」のセグメントには「季節予測」モデルのパイプライン・テンプレートが適用され、それぞれ実行されています。「WMAPE」列には加重MAPEの値が表示されています。 セグメントを選択し、画面右上の「パイプラインを開く」アイコンをクリックすると、 そのセグメントに適用され、実行されたパイプラインが表示されます。 加重MAPEの値や、このパイプラインの予測結果を確認し、精度をさらに改善したい場合は、従来通りの操作性でこのパイプラインをカスタイズ(アルゴリズムを変更したり、パラメータをチューニングしたり)することもできます。 最後の「セグメントのマージ」ノードでは、各セグメントの予測実行結果をマージします。 「セグメントのマージ」ノードのメニューから「予測ビューア」を選択すると、 予測結果のチャートが表示されます。 以下チャート内のオレンジ色の破線は、5つのセグメントの中の、地域:Region1×製品ライン:Line1に関する予測結果です。 以上のように、SAS ViyaのModel Studio上でビジュアルパイプラインを用いた時系列予測では、需要のパターンに基づく、より精度の高い予測モデリング戦略の自動実行も可能なんですね。 ※ビジュアルパイプラインでの需要分類&予測は、SAS Viya特設サイト内の「ビジュアライゼーション」及び「機械学習」セクションにて動画をご覧いただけます。 ※需要予測精度の向上に関しては、「ビジネスで「需要予測機能」を活用するために必要な3つの要素」ブログも参考にしてください。 ※Enterprise Open Analytics Platform 「SAS Viya」 を知りたいなら「特設サイト」へGO!
There is a lot of excitement about AI, but somehow the reality is not really living up to the hype. At the moment, we don’t see enough real results or use cases emerging, even though everyone agrees that there is huge potential. I polled some of our experts to find
The startup ecosystem is dynamic and the flow of venture capital into tech is at an all-time high. Billions of dollars are invested in tech startups every year. Many tech startups market themselves as ‘powered by AI’ and pitch investors with buzzword laden phrases such as, ‘we leverage state of
.@philsimon chimes in about data-related accomplishments and challenges.
Analytics-led innovation has become essential to respond to the rapidly evolving digital economy and associated consumer expectations. A preliminary reading of our Innovation at Scale study suggests that it is essential to access data across internal silos and organisational boundaries. Part of the solution is innovation spaces that encourage collaboration
Um sich bei IoT-Projekten einen gewissen Erfolg zu sichern, gewinnt die Zusammenarbeit für verschiedenste Unternehmen aus vielfältigen Bereichen immer mehr an Bedeutung. So müssen beispielsweise für die Implementierung einer smarten Produktionsumgebung Hardware-, Software- und Infrastrukturhersteller gemeinsam Know-how entwickeln und anwenden. Das E4TC am Campus der RWTH Aachen beschäftigt sich mit
The concept of analysing increasingly complex data to inform decision making is very relevant to policing today. Data science can and should support modern police forces to serve their communities. But what do we mean by data science and data scientists? One dictionary definition of a data scientist is: “a
You know those movies where the two friends learn only years later that the perfect relationship they were looking for was right in front of them the whole time? It’s been kind of the same for me during my time here at SAS... well, minus the romance. When I joined
When we hear the words AI and call centres, we immediately imagine dialling a number, only to be greeted by a semirobotic voice (think Siri or Google). While it’s true that AI can be more efficient than humans (at some things), does it really mean that human call centre agents
Most insurance companies depend on human expertise and business rules-based software to protect themselves from fraud. However, people move on. And the drive for digital transformation and process automation means data and scenarios change faster than you can update the rules. Machine learning has the potential to allow insurers to
SAS는 매년 IDC(International Data Corporation), 가트너(Gartner), 포레스터 리서치(Forrester Research, Inc.) 등 세계적인 분석 기관 및 시장 조사 업체로부터 SAS의 제품과 전략, 시장 경쟁성 등 여러 측면에서 평가를 받고 있습니다. 이러한 애널리스트들의 평가와 조언은 기술 구매를 고려하는 고객들은 물론 SAS의 발전과 혁신에도 큰 도움이 됩니다. 올해 상반기 SAS는 전문가들로부터 어떤 평가를
Submit your ideas for SAS Global Forum 2020, and share your knowledge with SAS users worldwide.
For many years now, companies have been seeking to understand the views of their customers by asking them for direct feedback. Market research, in the form of interviews or focus groups, has tried to understand customers’ wants and needs. And who has not sighed as yet another recorded voice informed
Um es mit Stephen Hawking zu sagen: „Intelligence is the ability to adapt to change". Das wissen vor allem auch die Digitalisierungsverantwortlichen von Versicherungen. Und wenn wir über den Einsatz von künstlicher Intelligenz in einer eher risikoaversen und sich langsam ändernden Branche nachdenken, dann gilt dieser Satz umso mehr. Denn
In a previous post, Zero to SAS in 60 Seconds- SAS Machine Learning on SAS Cloud, I documented my experience with a SAS free trial on the SAS Cloud. Well, the engineers at SAS have been busy and created another free trial. The new trial covers SAS Event Stream Processing
How we built a recommendation engine for new topics on communities.sas.com. We used data, machine learning, and DevOps to build a scoring engine with SAS.
Estamos viviendo un momento histórico. Tal y como lo recuerda nuestro CEO, Jim Goodnight, 2019 es especial porque se cumplen 50 años de la llegada del hombre a la luna. En ese entonces, se necesitaron 400.000 científicos, técnicos, matemáticos e ingenieros para convertir la idea de aterrizar en la luna
How do you explain flat-line forecasts to senior management? Or, do you just make manual overrides to adjust the forecast? When there is no detectable trend or seasonality associated with your demand history, or something has disrupted the trend and/or seasonality, simple time series methods (i.e. naïve and simple
지난 7월 4일 SAS코리아는 광화문 포시즌스호텔에서 국내 제조 산업 관계자를 대상으로 ‘SAS 제조 이노베이션 포럼 2019(SAS Manufacturing Innovation Forum 2019)’을 성공적으로 개최했습니다. SAS는 이번 포럼에서 미국, 독일, 일본 및 국내 제조사들의 고객 사례를 통해 ▲글로벌 B2B 업계의 예측 자산 유지보수 ▲제품 품질 및 투자 수익(ROI) 개선 ▲수요 예측을 통한 생산/판매
Some people still associate artificial intelligence (AI) with robots taking over the world. There's a lot of hype around self-driving cars and personal robots. However, there are far more realistic and beneficial examples of AI in everyday life. AI is the science of training systems to emulate human tasks through
I never took calculus. I can’t code. I have no industry expertise in supply chains or Basel III. My most lengthy study of AI is watching Bernard reanimate Dolores on Westworld. Based on the above, you could make the argument that I have no place in an analytics company. But
Neural networks, particularly convolutional neural networks, have become more and more popular in the field of computer vision. What are convolutional neural networks and what are they used for?
Technological advancements are changing every industry – and the health care industry is no exception. The value of AI has never been greater than when it’s used to improve patients’ conditions and save lives. For example, Cancer Center Amsterdam joined forces with SAS to improve patient care outcomes with AI.
El análisis de la información en las empresas ha dejado de ser un elemento opcional para convertirse en uno fundamental que puede ser la diferencia entre mantenerse competitivo o salir del mercado. Como ejemplo, los analistas de KPMG han demostrado, a través de un estudio-consulta, que el 33% de las
Interestingly enough, paperclips have their own day of honor. On May 29th we celebrate #NationalPaperclipDay! That well-known piece of curved wire deserves attention for keeping our papers together and helping us stay organized. Do you remember who else deserved the same attention? Clippit – the infamous Microsoft Office assistant, popularly known as ‘Clippy’.
It can be hard to get a handle on what artificial intelligence (AI) and machine learning (ML) will actually do. We all understand – in theory, at least – that they could change the way we live and work. In most cases and for most of us, however, the precise
In this blog, I use a Recurrent Neural Network (RNN) to predict whether opinions for a given review will be positive or negative. This prediction is treated as a text classification example. The Sentiment Classification Model is trained using deepRNN algorithms and the resulting model is used to predict if new reviews are positive or negative.