Analytics

Find out how analytics, from data mining to cognitive computing, is changing the way we do business

Analytics | Learn SAS
Rick Wicklin 0
What is polychoric correlation?

Correlation is a statistic that measures the association between two variables. When two variables are positively correlated, low values of one variable tend to be associated with low values of the other variable. Medium values and high values are similarly associated. For negative correlation, the association is flipped: low values

Analytics
0
本当の原因とはなにか:操作変数法(Instrumental variable methods)②

はじめに 因果推論コラム・シリーズでは潜在アウトカムモデルに基づく因果推論の解説を行なっています。今回のテーマは操作変数法(instrmental variable methods)です。 ある介入AがアウトカムYに及ぼす平均因果効果を推定する手法の1つに操作変数法があります。この手法は、操作変数と呼ばれる変数を利用することで交絡因子を調整することなく平均因果効果を推定する手法です。分野や状況によって交絡因子の特定や測定は困難であることは多く、それらの調整を行う必要がないという点で操作変数法は魅力的な手法です。ただ一方で、共変量調整に基づく因果効果の推定手法では必要とされない仮定が要求されますので、その点ご注意ください。ある変数が操作変数であるための条件は以下の3つです。各条件の詳細や実際にどのような変数が操作変数として提案されているか、操作変数と介入変数の相関が弱い場合に発生する問題については前回のコラムをご参照ください。 ZはAと関連する ZはYに対してAを介した以外の効果を持たない ZとYは共通原因を持たない 一般的な誤解として、操作変数法では操作変数が存在さえしていれば平均因果効果の推定が可能であるという認識があります。厳密には、操作変数が存在している場合に操作変数法によって推定可能なのはboundsと呼ばれる平均因果効果が含まれる幅であり、平均因果効果を推定するためには後述する仮定のいずれかが成立している必要があります。また、操作変数に関する3条件に加えて第4の条件としてどちらの仮定を置くかによっても、どのような集団における平均因果効果が推定可能であるかが異なります。本コラムではboundsと呼ばれる因果効果の部分識別について紹介した後、平均因果効果の識別に必要となるhomogeneity、およびmonotonicityについて紹介をします。なお、boundsは信頼区間とは異なる概念であることにご注意ください。   Bounds:因果効果の部分識別 このセクションでは本コラムシリーズの参考書籍である『Causal Inference: What If』の具体例を一部改変し、boundsについて簡単に紹介していきます。 「集団全員にある介入を行なった場合、行わなかった場合と比較して加法的なスケールで平均的にどの程度効果があるか」を示す平均因果効果E[Ya=1]-E[Ya=0]は、二値アウトカムに関してはPr[Ya=1=1]-Pr[Ya=0=1]と表すことが可能です。ここで、このPr[Ya=1=1]-Pr[Ya=0=1]のとりうる値の下限と上限を考えてみると、集団の潜在アウトカムに関して無情報である場合(データが何も存在しない場合)には、当然のことですが、下限は-1、上限は1です。 Pr[Ya=1=1]-Pr[Ya=0=1]=-1(下限) Pr[Ya=1=1]=0:介入を受ける場合の潜在アウトカムはすべての被験者に関して0 Pr[Ya=0=1]=1:介入を受けない場合の潜在アウトカムはすべての被験者に関して1 Pr[Ya=1=1]-Pr[Ya=0=1]=1(上限) Pr[Ya=1=1]=1:介入を受ける場合の潜在アウトカムはすべての被験者に関して1 Pr[Ya=0=1]=0:介入を受けない場合の潜在アウトカムはすべての被験者に関して1 すなわち、二値アウトカムに対する無条件での平均因果効果が含まれる幅(bounds)は[−1,1]です。例えば、集団が20名で構成されているとすると、下限と上限になる潜在アウトカムの状況は下図の通りです。 ここで集団(の一部)に関して実際にデータが得られた時、一致性の下でboundsはより狭く考えることが出来ます。これは、データとして一部の被験者らの潜在アウトカムYa=1, Ya=0の情報が得られるため、未知の部分に対して最も極端な場合の値を代入することによって下図のように下限と上限を計算することが出来ます。 なお、アウトカムが二値変数ではなく連続変数である場合にboundsを計算するためには、アウトカムが取り得る最小値と最大値を指定し、二値変数の場合と同様に代入する必要があります。また余談ですが、boundは前回のコラムで紹介した集団レベルでの除外制約 (condition (ii)) とmarginal exchangeability (condition (iii)) が成立する操作変数Zが存在する場合にはboundsをより狭く考えることが可能です。この場合のboundsはnatural boundsと呼ばれ、その幅はPr[A=1|Z=0]+Pr[A=0|Z=1] となり、データのみから識別されるものよりも狭くなります(Robins 1989, Manski 1990)。加えて、marginal exchangeabilityではなくjoint exchangeabilityが成立する場合には、さらに狭い幅となるsharp boundsを識別することが可能です。さらに追加の仮定を置くことでより狭いboundsが計算することができることも示されています(Richardson, Evans and Robins 2011)。しかし、上記のようなboundsは、一般には因果効果として用いる指標のnull value(e.g., E[Ya=1-Ya=0] であれば0)を含むかなり広い幅となり、有用でないことの方が一般的です。   第4の仮定:homogeneity(同質性)

Analytics | Artificial Intelligence
Hyeshin Hwang 0
SAS, 2024년 AI 시장 및 기술 전망 발표

산업별 당면 문제 해결과 맞춤형 첨단 서비스 제공에 AI 활용도 증가 AI 관련 신규 일자리 창출과 직원 업무 성과 지원, 기업 의사 결정에 긍정적인 영향 줄 것   AI는 이제 더 이상 미래 공상 과학 이야기가 아닌 우리 삶 속의 현실이 되어 버렸습니다. 앞으로 AI 기술은 어떤 모습으로 변화, 발전할

1 118 119 120 121 122 1,183