Tag: SAS Viya

Analytics
0
탄력적인 SAS Viya 운영을 통한 Microsoft Azure 클라우드 비용 절감

점점 더 많은 고객이 클라우드로 이동함에 따라 클라우드 인프라 비용이 중요한 요소가 되었습니다. 최초 클라우드 표준 가격 모델은 "종량제"(Pay-As-You-Go, 시간당 고정 가격) 모델이었습니다. 이 모델의 장점은 실제 사용량에 대해서만 비용을 지불하고 필요할 때 리소스를 축소할 수 있다는 것입니다. 하지만 운영환경(production environment)은 연중무휴 24시간 사용 가능한 상태를 유지해야 하는 경우가 많습니다.

Analytics
SAS Korea 0
SAS, ‘머신러닝운영(MLOps) 플랫폼’ 부문 리더로 선정

‘SAS 모델 매니저’, IDC 마켓스케이프 평가에서 머신러닝 운영 플랫폼 리더로 선정 기업의 머신러닝 모델 생산을 지원하는 광범위한 서비스 및 제품 제공 역량 보유 세계적인 분석 선두 기업 SAS가 이번에 처음 발간되기 시작한 ‘IDC 마켓스케이프: 전세계 머신러닝 운영 플랫폼 2022년도 벤더 평가[1] 보고서에서 리더 기업으로 선정되었습니다. IDC는 ‘SAS 바이야(SAS® Viya®)’에 포함된

Advanced Analytics | Analytics | Artificial Intelligence | Cloud | SAS Events
Lexi Regalado 0
4 ways you might not realize advanced analytics is changing the world

The word innovation often draws to mind images of self-driving cars, new phones, and shiny tech. Yet, innovation often happens behind the scenes, especially in advanced analytics. Around the world, industries like healthcare, government, banking, manufacturing, and more rely on the latest advancements in analytics. At SAS Explore, an event for

Analytics
0
SAS ViyaでのSASプログラム実行用リソース管理(二):ユーザごとに計算リソースと権限の設定方法

一、背景の紹介 "データアナリストのようなヘビーユーザと利用頻度が低いユーザや参照系のユーザなど、さまざまなユーザがおり、SASプログラムを実行する際に利用するCPUとメモリなどの計算リソースを、ユーザタイプごとに割り当てる設定をしたい"。これは、多くのViya4ユーザ様が持つ課題です。これを実現するためには、次の2つのステップが必要です 1.異なるタイプのユーザごとに利用できる計算リソースを設定します。 2.異なるタイプのユーザに対して、権限を個別に割り当てる必要があります。 前回の記事では、Viyaのシステム管理者に向けて、ユーザが利用できる計算リソースの上限値の変更方法を紹介していきます。本記事では、異なるタイプのユーザに対して、利用できる計算リソースを個別に設定する方法と権限を個別に割り当てる方法を紹介します。 二、準備 ユーザがSAS Studioを使用しているときにSAS Viyaがどのように計算リソースを呼び出すかは、前回の記事で説明したとおりですので、ここで割愛します。 興味のある方は、こちらのリンク先のブログをご参照ください。 以下の紹介内容は、基本的に一回目の記事と同じくデプロイメントファイルとK8sクラスターに変更を加える必要があるため、以下を準備する必要があります。基本的にViyaをデプロイ時に必要なものと同じですので、もし下記に対して不明なところがある場合、ご利用のViya環境のデプロイ担当者にお問い合わせください。 ・k8sクラスターのAPIサーバーに接続できる作業用のサーバー、OSはLinux系がおすすめです。 ・k8sクラスターに接続用コンフィグファイル(管理者権限が必要)。~/.kube/configとして保存します。 ・k8sのコマンドラインツール:kubectl ・Viyaデプロイメントアセットのコンパイル用ツール:kutomize ・Viyaをデプロイ時に使ったkustomization.yamlやsite-configフォルダを含めたファイルアセット また、ユーザの権限を設定するには、ViyaのGUI上での操作が必要のため、以下の準備も必要です。 ・管理者権限を持つViyaアカウント 三、ユーザごとに計算リソースの上限値を設定する方法 この章の項目は多いので、読者は以下のリンクを使って興味のあるセクションに直接ジャンプすることができます。 1.シナリオの紹介 2.ユーザグループの作成 3.SAS Viyaのデプロイメントファイルの修正 4.ヘビーユーザ用ポッドテンプレートを作成 5.ユーザ権限の設定 6.ユーザ権限設定の検証 1.シナリオの紹介 こちらの章の内容は、下記のシナリオに基づいて、ヘビーユーザとライトユーザ二種類のタイプのユーザに対して、それぞれ異なる計算リソースの上限を設定するシナリオを紹介します。 ・ユーザタイプA:ヘビーユーザ 利用する最大CPU:8CPU 利用する最大メモリ:8Gi ・ユーザタイプB:ライトユーザ 利用する最大CPU:2CPU 利用する最大メモリ:2Gi 2.ユーザグループの作成 まず、Viyaにヘビーユーザとライトユーザの2つの独立したユーザグループを作成する必要があります。この部分の作業はSAS ViyaのGUI上で実施します。 ①SAS Viyaへログインし、左側のメニューから「環境の管理」を選択します。 ②環境管理の画面に切り替わったら、左のメニューから「ユーザ」を選択します。 ③そして、画面上部の「ビュー」をクリックし、「カスタムグループ」を選択し、「新規作成」ボタンをクリックします。 ④ヘビーユーザ用グループを作成しますので、グループ新規作成の画面に、名前とID、説明を下記の図のように入力し、「保存」ボタンをクリックします。 ⑤そして、ライトユーザに対しても、同様の方法でグループを作成します。 ⑥次は、作ったユーザグループにユーザを追加しますので、作ったグループ名を選択し、右側の編集アイコンをクリックします。 ⑦ユーザ追加画面で、追加するユーザを選択し、追加アイコンで追加し、終わったら「OK」ボタンをクリックします。同様な操作でもう一つのヘビーユーザ用グループに対しても実施します。これで、ユーザグループの作成は完了しまた。 3.ライトユーザ用ポッドテンプレートを作成 ユーザグループごとに使用する計算リソースが異なるため、ユーザグループを作成した後に、ユーザグループごとに個別のポッドテンプレートを定義する必要があります。この部分の作業は、kubernetes側で実施します。 ①まず、ライトユーザ向けのポッドテンプレートを作成してみましょう。下記のコマンドで既存のポッドテンプレートをファイルとして、ローカルに保存します。 kubectl

Analytics
0
SAS ViyaでのSASプログラム実行用リソース管理(一):計算リソース上限の設定方法

一、背景の紹介 "データアナリストのようなヘビーユーザと利用頻度が低いユーザや参照系のユーザなど、さまざまなユーザがおり、SASプログラムを実行する際に利用するCPUとメモリなどの計算リソースを、ユーザタイプごとに割り当てる設定をしたい"。これは、多くのViyaユーザ様が持つ課題です。これを実現するためには、次の2つのステップが必要です 1.異なるタイプのユーザごとに利用できる計算リソースを設定します。 2.異なるタイプのユーザに対して、権限を個別に割り当てる必要があります。 本記事では、まずViyaのシステム管理者に向けて、ユーザが利用できる計算リソースの上限値の変更方法を紹介していきます。 二、準備 設定方法を紹介する前に、まずViyaでSASプログラムを実行時に計算リソースを調達する方法を説明します。ここでは、viyaのアーキテクチャとk8sの知識が必要になるので、なるべくわかりやすく解説していきたいと思います。 まず、ユーザがSAS Studioを使用する際、Viyaはそのユーザのみが使用できるセッションを作成します。 ユーザは、実行が必要なSASアプリケーションごとに個別のセッションを作成することができ、各セッションはバックグラウンドでk8sクラスタ上に対応するポッドを持ちます。 各ポッドには使用できるCPUとメモリの上限があり、デフォルトでは2vcpusと2Giのメモリが使用できます。Viyaがユーザのセッションのためにポッドを生成するとき、ポッドテンプレート(podTemplate)と呼ばれるものを参照します。ポッドテンプレートはviyaがデプロイされるときにyamlファイルで定義されるものです。そのため、ユーザセッションが利用できる計算リソースを変更したい場合は、viyaのデプロイに使用するポッドテンプレートのyamlファイルを変更する必要があります。また、ユーザの種類によって異なる計算リソースの制限を設定したい場合は、既存のポッドテンプレートをコピーして、名前と数値を変更するだけです。 デプロイメントファイルとK8sクラスターに変更を加える必要があるため、以下を準備する必要があります。基本的にViyaをデプロイ時に必要なものと同じですので、もし下記に対して不明なところがある場合、ご利用のViya環境のデプロイ担当者にお問い合わせください。 ・k8sクラスターのAPIサーバーに接続できる作業用のサーバー、OSはLinux系がおすすめです。 ・k8sクラスターに接続用コンフィグファイル(管理者権限が必要)。~/.kube/configとして保存します。 ・k8sのコマンドラインツール:kubectl ・Viyaデプロイメントアセットのコンパイル用ツール:kutomize ・Viyaをデプロイ時に使ったkustomization.yamlやsite-configフォルダを含めたファイルアセット 三、計算リソース上限値の修正方法 計算リソースの調達方法を簡単に紹介した後、次は、そのリソースを変更する方法について説明します。ここでは、主に以下の2つの方式を採用しています。以下はLinux OSを使用することを前提に説明します。 以下はこの章の項目の一覧です。読者は以下のリンクを使って興味のあるセクションに直接ジャンプすることができます。 1.デプロイ用ポッドテンプレートファイルを修正し、再デプロイでリソースの設定を更新する方法 2.K8sクラスター内にデプロイされたポッドテンプレートをそのまま修正する方法 3.設定後の検証方法 1.デプロイ用ポッドテンプレートファイルを修正し、再デプロイでリソースの設定を更新する方法 この方法のメリットは、デプロイメントファイルに対して変更を加えるため、後にViya環境のバージョンアップや設定変更があった場合でも、計算リソースの設定の変更が保持されることです。 デメリットは、設定時にデプロイメント手順を再実行する必要があるため、比較的面倒ではあるが、長期的には管理しやすいので、おすすめです。 ①まず、Viya のデプロイメントアセットを含むパスの一番下に移動する必要があります。 このパスを/opt/viyainstallと仮定して、以下のコマンドを実行する必要があります。 deploy=/opt/viyainstall cd $deploy パス$deployの下の構造は、おおよそ次のようになっているはずです。下記のファイルやフォルダが含まれていない場合、パスが正しいか、Viyaのデプロイに使用するファイルが欠落していないかを確認することが重要です。 ②次に、ポッドテンプレート内で定義されているcpuとmemoryの制限を変更するために、site-configフォルダに以下のファイルを作成する必要があります。実際には、設定したいCPUやメモリの上限値に合わせて、下記のコマンド内のvalueの値を変更する必要があります。下記のコマンドの例では、ユーザが利用できる計算リソースの上限を31vcpu/240Giに設定しました。 cat <<EOF > $deploy/site-config/modify-podtemplate.yaml #メモリの上限値を修正 - op: add path: "/metadata/annotations/launcher.sas.com~1default-memory-limit" value: 240Gi #利用できるメモリの上限値 - op:

1 2 3 4 5 6 18