Tag: SAS Viya

Analytics
Pythonで操るSASの画像処理技術入門編

5月23日に開催されたSAS Forum Japan 2017の「SAS Viyaディープダイブ」セッションでは、SASのAIに搭載されている画像処理機能が入門レベルとして紹介されました。 従来からSASを活用されている方々にとっては、「SAS」と「画像処理」って、なかなか結びつかないのではないでしょうか? 「画像処理技術」に関して、SASではどのようなアプローチをとってきているのか...を、過去、現在、そして未来に分けて紹介しています。 詳細(スライド内容)に関しては、以下をご覧ください。(SlideShareに公開済み) Pythonで操るSAS Viyaの画像処理技術入門編 from SAS Institute Japan   詳細(講演ビデオ)に関しては、以下をご覧ください。(YouTubeに公開済み)

Machine Learning
Python, Rで使うSAS Viya!

みなさま、SAS Viyaはご存知でしょうか? SAS ViyaはSASが2016年末に出した新データ分析プラットフォームでして、データの探索、整形から機械学習まで、幅広くデータ分析することができる万能品です。 こんな感じのロゴです。 SAS Viyaの特徴にインメモリエンジンによる分散処理とオープンというものがあります。 SAS Viyaでのデータ分析はすべてCASというエンジンで実行されるのですが、このCASはサーバのメモリ上にデータをロードし、分析処理が展開されます。しかも複数サーバ構成でも良い感じにスケールして並列分散処理するので、1台のサーバにデータが乗らないとか、1台だけだと遅いとかいうことはありません。   SAS Viyaの特徴 さらにSAS Viyaはオープンな特徴があります。 どうオープンなのかというと、実は裏表なく嘘のつけない性格・・・というわけではありません。 SAS ViyaはSAS言語のみならずPythonやR、Java、LuaそしてREST APIといったさまざまな言語で操作することができるオープン性を持っています。 従来のSAS製品だとSAS言語を覚えないと使うことができなかったのですが、SAS Viyaでは多くのデータサイエンティストさんが使っているPythonやRでデータ分析ができます。しかも同じプラットフォームでデータ分析するので、言語間で違う結果が出るということはありません。同じ設定で分析すれば、どの言語を使っても同じ結果が返ってきます。 さらにいえばPythonやRでデータ分析するときも、多くの場合は1台のサーバやパソコンで処理すると思います。そのさい、サーバやパソコンはCPUやメモリのすべてをデータ分析に割くということはありません。マルチコアCPUを使っていても、大体はシングルコアで処理されます。 しかしSAS Viyaではリソースを使い切ります。4コアであれば4コア、サーバ3台構成であれば3台を余さず使って、より速く効率的に分析します。 全体像でいうとこんな感じです。 どうやって使うの? PythonやRでSAS Viyaを使いはじめるときは、まずはSWATというOSSを導入する必要があります。 SWATはSpecial Weapon and Tacticsの略・・・ではありません。 SAS Scripting Wrapper for Analytics Transferという、SAS Viyaを操作するためのラッパーです。SASが作って、GitHubで公開しています。 Python SWAT https://sassoftware.github.io/python-swat/index.html R SWAT https://github.com/sassoftware/R-swat これらをpip installやinstall.packagesで入手して使いはじめることができます。 SWATはWindows、Linux、MacOSいずれもサポートしていますので、お好きなプラットフォームに導入できます。 Pythonでのプログラミング例はこんな感じです。たったこれだけで、SAS Viyaを使って決定木モデルを作ることができます。とても簡単です。 #

Advanced Analytics
Edoardo Riva 0
Let’s talk about Microservices

Microservices are a key component of the SAS Viya architecture. In this post, I’ll introduce and explain the benefits of microservices. In a future post we’ll dig deeper into the microservices architecture. What are microservices? When we look at SAS Viya architecture diagrams, we can find, among the new core components,

Analytics
Miriam Audelo 0
Andar en la nube: una buena idea

Los gurús del mundo corporativo no dejan de repetir un veredicto: en los mercados digitales de nuestros días, quien analice los datos de su consumidor y de su entorno de negocios estará en posición de alcanzar el éxito. Creer en el planteamiento es fácil. Como lo han señalado algunos estudios,

Data for Good | SAS Events | Students & Educators
小林 泉 0
SGF2017 レポート - 初日、オープニングセッション他

今年のSAS Global Forum は、USのフロリダ州オーランドで開催されました。 例年同様日曜日スタート 従来と異なるのは、パートナー様向けの、SAS Partner Forum 2017 がSGFと同時開催されたことです。日本から参加されたSASジャパンのパートナー企業様は、前日夜のレセプションから始まり、イベント週間の先頭をきって、日曜日朝8:30からのSAS Executiveも登壇するセッションに参加いただき、みっちり午後までのスケジュールを、忙しくこなして頂きました。その様子は、こちらのSAS Partner Blogよりビデオでご覧いただけます。お忙しい中を時間を割いて日本からご参加いただくパートナー企業様が年々、増加しており、今年もセッション他、有意義なコミュニケーションの時間を過ごさせていただきました。誠にありがとうございます。多種多様なスキル・経験をお持ちのパートナー企業皆様に囲まれ、今後のSASビジネスに非常に心強さを感じました。 明日のリーダーを育成する さて、SAS Global Forum、通称SGFは、初日の夜のOpening Sessionからスタートなのですが、その前に、前述のパートナー様向けのイベントだけでなく、毎年最も重要なイベントの一つであるAcademic Summitが行われます。これは、SASが重要視することの一つである、人材育成・教育への投資、そしてその結果、社会へ優秀なデータサイエンティストを生み出すための活動であるAcademic Programの年次の総会のようなものです。教育関係者だけではなく企業関係者も参加することで、実務で役立つ教育の促進と人材の確保というエコシステムを形成しています。これを特徴付ける数字としては、このイベントのスポンサーを見てもわかります。 通常のパートナー企業様のスポンサーが29社 アカデミックのスポンサーは、16教育機関。 この数から見ても、本イベントを大学などの教育機関が重要視していて、教育と企業との連携が盛んであることが伺えると思います。 SAS Global Forumそのものが、教育機関と民間企業の接点の場であり、学生の発表や表彰、そして参加大学の企業へのアピールの場にもなっています。さて、Academic Summitのアジェンダを見てみましょう。 ネットワーキング SAS担当エグゼクティブの挨拶 スカラシップ受賞者の紹介 Student Ambassador Program受賞者の紹介 Student Symposiumファイナリストの発表 ゲスト講演 Student Symposium(SGF2017で実施されるコンペティション)の優勝チームである、Kennesaw State University の "The Three Amigos"は、「銀行の定期預金契約者の決定要因をロジスティック回帰と決定木で分析」したものでした。その他Student Symposiumの発表は以下のようなものがありました。 Dataninjas: Modeling Life Insurance Risk (Kennesaw State University)

Analytics
Peter Pugh-Jones 0
Welcome to the new, open SAS!

For many years, we’ve been saying that to do advanced analytics well, you must have good quality, clean and standardised data. And now we’re fast approaching the deadline for businesses to be compliant with the GDPR regulations (with fines for noncompliance up to four per cent of revenue). SAS’ capabilities

Mauricio González 0
Cinco razones por las que su empresa debería contar con una solución como Viya

“La arquitectura abierta SAS Viya hace a la analítica accesible para todos, y queremos aprovechar esa apertura creando una comunidad para compartir el conocimiento”- Randy Guard, Vicepresidente Ejecutivo y Director de Marketing de SAS En SAS llevamos más de 40 años al servicio de su compañía y durante estas décadas

Programming Tips
小林 泉 0
グラフ理論②:PythonとSAS Viyaでグラフ分析

はじめに 以前このブログ「グラフ理論入門:ソーシャル・ネットワークの分析例」でもご紹介しましたが。SASは従来からネットワーク分析(グラフ分析)をサポートしています。ネットワーク分析の基本的なことはまず上記のブログをご参照ください。 今回は、プログラミングスキルがあるアプリケーション開発者やデータサイエンティスト向けです。Pythonからネイティブに利用できるSAS Viyaを使用して、ネットワーク分析をする簡単な利用例をご紹介します。 2016夏にリリースされたSAS Viyaは、アナリティクスに必要な全てのアルゴリズムを提供しつつ、かつオープンさを兼ね備えた全く新しいプラットフォームです。これにより、SAS Viyaをアプリケーションにシームレスに組み込むことや、どのようなプログラミング言語からでもアナリティクス・モデルの開発が可能になりました。今回は、SASのパワフルなアナリティクス機能にアクセスするために、そのオープンさがどのように役立つののかにフォーカスします。 前提条件 SAS Viyaは、REST APIにも対応しているため、それを使用しても良いのですが、一般的には、使い慣れたプログラミング言語を使用する方が効率が良いと考えられるため、今回は、データサイエンティストや大学での利用者が多い、Pythonを使用したいと思います。 デモ環境としては、Pythonコードを実行できるだけでなく書式付テキストも付記できる、Webベースのオープンな対話型環境であるJupyter Notebookを使用します。Jupyterをインストールした後に、SAS Scripting Wrapper for Analytics Transfer(SWAT)をインストールする必要があります。このパッケージは、SAS Cloud Analytic Services(CAS)に接続するためのPythonクライアントです。これにより、Pythonから全てのCASアクションを実行することが可能となります。SWATパッケージの情報やJupyter Notebookのサンプルはこちらをごらんください。https://github.com/sassoftware SAS Cloud Analytic Services(CAS)にアクセスする SAS Viyaのコアにあるのは、SAS Cloud Analytic Services(CAS: キャス)というアナリティクスの実行エンジンです。"CASアクション"という個々の機能を実行したり、データにアクセスしたりするためには、CASに接続するためのセッションが必要となります。セッションからCASへの接続には、バイナリ接続(非常に大きなデータ転送の場合にはこちらが推奨です)あるいは、HTTP/HTTPS経由のREST API接続のどちらかを使用することができます。今回は、デモンストレーション目的で非常に小さなデータを扱うので、RESTプロトコルを使用します。SAS ViyaとCASのより詳細な情報はこちらのオンラインドキュメントをごらんください。 多くのプログラミングと同様、まずは使用するライブラリの定義からです。Pythonでは、importステートメントを使用します。非常に良く使われるmatplotlibライブラリに加えて、ネットワークをビジュアライズするためのnetworkxも使用します。 from swat import * import numpy as np import pandas as pd import matplotlib.pyplot as

Customer Intelligence
Mauricio González 0
¿Cómo ser más dinámicos y rápidos en las respuestas a las necesidades de sus negocios?

Anteriormente, el sector empresarial se enfrentaba constantemente a la escases de información de aquello que ocurría en su compañía, tanto a nivel de procesos internos como de interacción con los clientes, siendo este último punto el más relevante por estar ligado la fidelización o desencanto de la marca. Sin embargo,

1 4 5 6 7