Consumer goods manufacturers have faced significant challenges over the past few years due to rapidly changing demand and supply disruptions in their end-to-end supply chain. As a result, manufacturers have realized the need to strengthen their resilience and have prioritized assessing their manufacturing capacity to maximize output and automation. To
Retail
Actualmente los datos de la gran distribución no forman parte de la cuenta de resultados, pero es el activo que deberían monetizar con mayor urgencia. Gracias a este análisis avanzado se puede mejorar el margen de la compañía y aumentar la eficiencia de diferentes procesos. En este artículo vamos a
La experiencia de compra de millones de personas ha evolucionado recientemente hacia nuevas vertientes. Hoy, a diferencia del modelo tradicional de acudir físicamente a una atienda, recorrer los pasillos, pagar y volver a casa, con el avance de la digitalización y el crecimiento de aplicaciones, surge un nuevo modelo que
Ah, Valentine’s Day. Whether you love or loathe this sweet holiday, you can’t miss it if you live in the United States. Seemingly by magic, stores begin filling with red and pink treats right after Christmas. And while you might be astonished by the quick switch in your favorite store,
近年、AI/アナリティクス市場に巨大ITベンダーが参入してきたことと、データサイエンティストがその存在感を高めようとしてきたことがあいまって、「予測」、「予測モデル」あるいは「AI予測」、「AIモデル」という言葉が、この市場で一般的になってきました。ビジネスにおいて、データ分析による洞察に基づいてよりよい意思決定と自動化を行うことーこれを「アナリティクス」と言いますーは、筆者がこの世界に足を踏み入れた20年以上前よりもっと前から、一部の「データを武器とする企業」において行われていました。それがより多くの企業に広まってきたということです。 今回は、より多くの方が「予測」について理解を深めてきているところで、その「予測」をもう少し深く理解し、近年の世界情勢において、大きく変化が求められている業界の1つである、流通小売業や製造業のサプライチェーン課題にフォーカスしたいと思います。まさにいま、サプライチェーンの大きな課題はレジリエンス強化です。そのための解決ソリューションとしてデジタルツインが注目されていますが、デジタルツインで何をすべきかを適切に見極めるために必要なおさらいとして、そもそも不確実性とは?について頭の中を整理したいと思います。 アナリティクスとは将来の不確実性に対して勇気を出して踏み出すーつまり行動するーことである。 「予測」という概念が広まることで、「予測」が確率的であるという認知も正しく広まってきました。需要予測値は確率的なものであるため、予測値そのものだけではなく安全在庫を計算するためにその確率を活用し、解約予兆、商品のレコメンデーションへの反応、不正検知、異常検知や歩留まりなど、アナリティクスつまり予測モデルを意思決定に適用するほとんどの意思決定は、すべて確率的なものです。よく見る予測モデル以外でも同様です。最適化も多くの場合その入力となる情報が確率的にばらついているケースが多いですし、近年、古典的な最適化手法が当てはまりずらいビジネス課題、例えばサプライチェーンの最適化、リアルタイムの配送スケジューリングなどの課題やカスタマージャーニーの最適化課題に対して適用される強化学習のアプローチにおいても、将来の報酬を確率的に計算して、目の前の一手を決めているといえます。 ここで唐突に余談ですが、リスクという言葉は日本語だとネガティブな意味に使われることが多いですが、本来はポジティブでもネガティブでもなく、単に確率的なバラツキを意味しています。なのでリスクを管理するということは、単に将来に対して確率的なバラツキを特定し意思決定の要因に組み込むということです。つまりこれはアナリティクスと同義です。なので、アナリティクスとアナリシスは語感は似ていますが、意味はだいぶ異なるということになります。 不確実性の1つは過去の経験から得られる確率 これは、上述した「リスク」です。どのような事象が起きたか?それが起こる確率はどれくらいか?そのインパクトはどの程度か?などについて過去の経験に基づいて洞察が得られるものです。例えば、輸送の遅れ、需要のバラツキ、ITシステムの障害、消費者の購買行動におけるバラツキ、設備などの停止、部品の故障率や製造品質などです。このような不確実性は過去のデータを分析することで予測可能です。このタイプの不確実性を今回は、「予測可能な不確実性」と呼ぶことにします。この「予測可能な不確実性」への対処に関しては、長年の経験から、多くのケースにおいて理論が確立してアナリティクスのベストプラクティスにすでに組み込まれています。 近年ニーズが増えてきたもう一つの不確実性への対応 こちらはずばり、過去に起きてないために予測することが困難な事象です。例えば、COVID-19、自然災害、特定地域での紛争や各国の政治情勢の変化などです。海洋の変化が予測とは大きく異なり漁獲高が計画と大きく乖離して輸出の計画が崩れて困っているという事例も該当します。特にサプライチェーン管理が必要な多くの企業は、近年特にこのような事象により、サプライチェーンが突如として混乱に見舞われるという経験をされているでしょう。このような不確実性は、過去に起きてない事象であっても、あらゆる情報を収集することで将来の起こる可能性についての洞察をある程度得ることができることもあります。ソーシャルメディアを分析することで、その国の経済の先行指標としての洞察を得たり、政治的な変化の予兆につなげるという活用方法も実際にされてきています。しかし、自社のサプライチェーンに関わる世界中のあらゆる状況に対して調べつくすということは、ほとんどの企業にとっては投資対効果的に見合わないと思います。したがって、サプライチェーンにおいては、そのような事象によって混乱した状態からなるべく早く回復するために、自社のサプライチェーンの脆弱性を理解し、起こりうるシナリオを想定して、それに備えることに投資の目を向けます。このようなタイプの不確実性を今回は、「予測困難な不確実性」と呼ぶことにします。 デジタルツインでは二つの不確実性への対応が価値をもたらす デジタルツインですが、そもそもビジネスをデータに基づいた意思決定にしている世界は部分的には47年前からデジタルツインだと言えます(ちょっと強引すぎますかね)。SASは1976年に穀物の収穫高の予測を電子的統計手法で行ったのがスタートです。ITの進化、IOT技術の進化に伴いより多くのデータが観測・収集できるようになり、ビジネスの一部だけでなくより全体がデータの世界で表現できる様になりました。近年ではそれを「デジタルツイン」と呼んでいます。サプライチェーンのデジタルツインを実現して、皆様はどんな課題を解決したいでしょうか?今回取り上げた「予測可能な不確実性」と「予測不可能な不確実性」を理解することで、デジタルツインを活用した「現実世界のよりよい理解」、「その理解に基づく意思決定」、「シナリオ分析」や「シミュレーション」を適切に行うことができるようになり、将来起こりうることに対して、よりよい対処が可能となるでしょう。 この話の続きが気になる方へ SASのデジタルツインの最新の取り組みについてはまずはこちらのプレスリリースをご覧ください。 また、デジタルツインやシミュレーションについて他のユースケースなどご興味ある方は、こちらのCosmo Tech社の(英語)もお役に立つと思います。
Cloud technologies enable greater access to analytics. The shift to providing less complicated usability empowers decision-makers and offers a competitive advantage previously unattainable. Companies of all sizes and sectors embrace cloud technologies to address data and information challenges. IT departments are short-staffed and expected to support a large and varied
You're not alone if you’re still seeing local grocery stores with empty shelves. Food shortages are still lingering in 2023. Increases in consumer demand, labor shortages and shipping capacity restraints continue to interrupt supply chains, particularly for grocery retailers. These problems have persisted throughout the pandemic, as seen with the shortages
Customers are more demanding than ever before. An effect of the pandemic is that brands had to go digital at any cost to survive and one of the side effects from this was an increase in customer personalization demand. Email inboxes are full of emails from all possible brands –
A lo largo de 2022, el mundo siguió enfrentando un entorno cambiante dominado por altibajos económicos, una crisis energética provocada por un conflicto bélico, una cadena de suministro que se reinventa, y recuperándose de los estragos de una larga pandemia global. Al mismo tiempo, los cambios culturales, ambientales y la
If Fabrizio Biscotti, vice president at US research and consultancy firm Gartner, is correct that hyperautomation is no longer optional but a ‘condition of survival’ for businesses, then we are indeed entering a new era of retail. It’s a theme we’ve discussed throughout our blog series on hyperautomation – but
Para millones de personas, además de obtener los servicios y productos que prefieren, la experiencia que les puedan ofrecer las marcas es cada vez más relevante y puede marcar la diferencia entre seguir siendo leales a ellas o abandonarlas. Hoy, las organizaciones están conscientes de esto, por lo que
The landscape of supply chains has changed rapidly due to unforeseen disruptions. These changes include supply chain bottlenecks, inflation and geopolitical activities across retail and consumer goods industries. Retail supply chains are under immense pressure to keep up with these rapid changes. Innovators have been quick to take advantage of
El Buen Fin 2022, el evento comercial más esperado por millones de consumidores mexicanos tendrá lugar del 18 al 21 de noviembre. A lo largo de una semana, estarán a su disposición productos y servicios, promociones especiales y esquemas de pago de meses sin intereses. La derrama económica esperada de
O avanço e aceleração digital são uma realidade em todos os setores após o surgimento da pandemia, e empresas de varejo e bens de consumo não são exceção. Nas linhas a seguir, trago algumas reflexões sobre esta dinâmica neste segmento e o papel de advanced analytics na transformação de empresas
How can retailers start to navigate the current market volatility and risks and mitigate supply chain disruption?
A pesar de la inminente vuelta a la normalidad, o la paulatina recuperación del turismo global, la inflación vuelve a ocupar todos los titulares e informativos. Mientras se da este aumento de los precios, y la mayoría de las empresas se esfuerzan por reconstruir sus reservas de stock tras la experiencia
Getting demand right – or getting it wrong – can have a significant impact on customer perceptions of your brand, particularly in this age of instant gratification. The need for agile, accurate demand planning has never been greater. Predicting forward-looking demand signals and shifting consumer demand patterns to recommend balanced, profitable commercial
Consumers are pulling back and shifting their purchases in the wake of inflationary pressures caused by high prices for fuel, freight costs, consumer goods and nonessential products. Demand is shifting faster than many retailers and consumer goods companies anticipated. Inflation continues to rise forcing consumer spending to shift once again
Often the biggest challenge when implementing a successful forecasting process has nothing to do with the analytics. Forecast adoption – incorporating forecasts into decision-making – is just as high a hurdle to overcome as the models themselves. Forecasting is more than analytical models Developing a forecasting process typically begins with
Queuing up to wait for services is a nearly universal experience. We routinely arrange ourselves in single file lines at the bank, at retail stores, and at the fast-food drive-through. Since the COVID pandemic hit, we've increasingly waited in lines to ensure our health – lining up to be seen
In today's environment, data is exceedingly important but also increasingly harder to get and manage. A reliable customer data platform (CDP) can provide significant value to retail and consumer packaged goods (CPG) companies. Customer data platforms are used to consolidate and integrate customer and consumer data into a single data source. CDP
When The Arab Academy for Management, Banking & Financial Sciences (AAMBFS) began looking for a business partner to help prepare a new generation of students for the increasing role analytics plays in the finance and business sectors, they took a very non-academic approach. Unlike traditional university programs focused on a
Retail expert Charlie Chase recently participated in a private unplugged discussion about disruption challenges with retail executives hosted by the Retail Council of Canada. All quotes have been edited for maximum clarity, and participants have been de-identified. The last two years have created a major disruption for retailers and consumer
A delegation of 26 members of the American Chambers of Commerce of the European Union (AmCham EU) made their way to the Research Triangle. Representatives learned about local methods and best practices for developing the American economy and locating potential business partners. Leaders from countries across Europe first met with
To find out more, please join SAS at the Microsoft stand at EuroCIS. Read all interviews of my entire series here.
One thing that impresses me about the analytical solutions we have is the degree of granularity we can get down to in the forecasting & planning process.
The Vehicle Routing Problem (VRP) algorithm aims to find optimal routes for one or multiple vehicles visiting a set of locations and delivering a specific amount of goods demanded by these locations. Problems related to the distribution of goods, normally between warehouses and customers or stores, are generally considered vehicle routing problems. For this article's example, let’s consider a real (and awesome) brewery that needs to deliver beer kegs to different bars and restaurants throughout multiple locations.
Broadband has become widely available and 5G is up and running in many countries, meaning more and more people have access to the internet via different platforms. With good quality internet connections either at home or via mobile connections, consumer behaviour has changed rapidly. Those who have been in digital
Outliers provide much-needed insights into the actual relationships that influence the demand for products in the marketplace. They are particularly useful when modeling consumer behavior where abnormalities are common occurrences or unforeseen disruptions that impact consumer demand. But why do demand planners cleanse out outliers, when many are not really
“Diga-me com quem andas e te direi quem és” é um provérbio popular vastamente conhecido e um consenso entre várias pessoas. Porém, será que essa máxima é verdadeira em todas as situações? Se assim o for, como poderíamos empregar essa relação nas atividades de prevenção a fraude e outros crimes