Uncategorized

Analytics | Data Management | Fraud & Security Intelligence
David Kennedy 0
Criminal justice data system speeds prosecutions, helps put offenders away

Much has been written about the value that North Carolina’s Criminal Justice Law Enforcement Automated Data Services (CJLEADS) system has brought the state’s court personnel and law enforcement officers. CJLEADS integrates dozens of NC criminal justice and law enforcement data sets, a vast improvement over the state’s legacy processes. Law

Advanced Analytics | Artificial Intelligence | Machine Learning
SAS 코리아, 최신 머신러닝·자연어처리 등 인공지능(AI) 활용 분석 기능 강화

인공지능 활용 엔터프라이즈 분석 가능한 ‘SAS 플랫폼’ 최신 오퍼링 출시 SAS 코리아, 최신 머신러닝·자연어처리 등 인공지능(AI) 활용 분석 기능 강화 머신러닝·자연어처리로 비정형 데이터 가치 극대화 및 전 과정 시각화하는 엔드투엔드 비주얼 환경 제공 웹 인터페이스로 전체 분석 라이프사이클을 통합하고, 초보자부터 전문가까지 전사 협업 지원 미국적십자사·시스코·뮌헨재보험 등 도입… 분석 인사이트로 비즈니스

Learn SAS | Programming Tips
[프로그래밍 팁] SAS 유니버시티 에디션으로 파이썬 코딩하기

‘국영수코(co)’라는 신조어 들어보셨나요? 국어, 영어, 수학, 코딩(coding)의 약자인데요. 교육부의 ‘2015 개정교육과정’에 따라 올해 3월부터 중학생, 내년부터는 초등학교 5, 6학년 학생의 소프트웨어(SW) 교육이 의무화되면서 코딩 교육과 관련 자격증 열풍이 불고 있습니다. 미국, 영국 등 IT 선진국들은 이미 발 빠르게 코딩 교육을 의무화하며, 4차 산업혁명 시대의 인재 확보에 나섰는데요. SAS 역시 2014년, 학습이나 비상업적인

Analytics
Carsten Krah 0
Model Risk Management - Dünnes Eis

Banken dürfen das Thema Model Risk Management nicht aussitzen – schon wegen der EZB und ihrer Initiative TRIM - Abwarten, verzögern, aussitzen: Die Banken tun seit Jahren nicht viel dafür, sich als aktiver Gegenpart der Bankenaufsicht zu profilieren. Ist ihnen das vorzuwerfen? Schließlich, so scheint es, treibt die Aufsicht auch

Analytics | Fraud & Security Intelligence | Machine Learning
Min-Gi Cho 0
사기 탐지 전략을 강화하는 8가지 방법

최근 금융감독원은 2017년 국내 보이스피싱 피해액이 2,423억원에 달하며, 전년 대비 26% 증가했다고 발표했습니다. 특히 하반기에만 가상화폐를 이용해 148억원이 탈취된 것으로 밝혀지며 논란이 되고 있는데요. 이렇게 IT 기술이 발달함에 따라 신종 자금세탁 수법이 등장하면서 사기 탐지는 더욱 어려워지고 있습니다. 결국 산업에 관계없이 모든 금융 범죄 조사관은 사기 탐지 기술과 전략을 지속적으로 강화하고,

Internet of Things | Machine Learning
Charlie Chase 0
Is quick response forecasting a reality or just another buzzword?

“Quick response forecasting (QRF) techniques are forecasting processes that can incorporate information quickly enough to act upon by agile supply chains” explained Dr. Larry Lapide, in a recent Journal of Business Forecasting column. The concept of QRF is based on updating demand forecasts to reflect real and rapid changes in demand, both

Analytics | Data Visualization | Learn SAS
SAS Korea 0
SAS 비주얼 애널리틱스로 사용자 정의 폴리곤 구축 및 시각화하기

데이터 시각화 툴을 이용해 건물 지도, 층 설계, 기타 Esri 데이터를 디스플레이해야 한다면? 여기를 주목해주세요! 최근 ‘SAS 비주얼 애널리틱스 8.2(SAS Visual Analytics 8.2)’에 추가된 사용자 정의 폴리곤(polygon) 기능으로 여러 유형의 지역 오버레이를 렌더링할 수 있습니다. 일반적으로 보고서에 층 또는 건물 지도를 포함시킬 때 많이 사용되는데요. 오늘은 SAS 비주얼 애널리틱스로 실제 폴리곤을 등록하고,

Data Visualization
Ed Odom 0
SGMAP: Using MAPIMPORT for Polygon Maps

An earlier SGMAP blog used the BUBBLE statement to overlay point data on top of an Open Street Map. However, not all map features are points. Some are enclosed areas called polygons. Some map polygons share common borders such as states and counties. Others are separate, non-contiguous regions such as national parks

Analytics | Internet of Things
SAS Korea 0
사물인터넷(IoT) 성공 로드맵 – 스트리밍 엣지(edge) 분석부터 텔레매틱스까지

2월의 마지막 주, 전 세계의 정보통신기술(ICT) 업체, 스타트 업, 벤처캐피털(VC)이 스페인 바르셀로나에 모입니다. 바로 2월 26일부터 3월 2일까지 개최되는 세계 최대 모바일 전시회 '2018년 모바일 월드 콩그레스(MWC; Mobile World Congress)' 때문인데요. MWC는 4차 산업혁명의 핵심 기술인 사물인터넷(IoT)이 통신, 도시, 자동차, 제조, 여행, 헬스케어, 에너지, 유통 등 전 산업에 걸쳐 어떻게 세상을 변화시키고 있는지에 대해 확인할 수

Learn SAS
Sian Roberts 0
Six new SAS books for 2018

Start off the New Year by brushing up your SAS programming skills! Begin your goal to become SAS certified or explore these New SAS books and other SAS Press titles, many of which will be making their bookshelf debut at SAS® Global Forum 2018 in Denver, CO! Want to be notified when a new book

Machine Learning
Makoto Unemi (畝見 真) 0
ディープラーニングの判断根拠

予測モデル生成において、従来は、人が考えてデータの中から特徴を抽出する必要がありましたが、ディープラーニングでは、この特徴を自動的に抽出して学習することが可能になっています。 半面、どのように特徴が抽出されているのかに関しては、基本的にはブラックボックスであり、説明責任が求められるような業務要件では、その分析結果を業務に活用することが難しい場合もあります。 しかし、近年ディープラーニングから出てきた結果の根拠=判断根拠を可視化する手法がいくつか考案されてきています。 関連情報サイト: https://qiita.com/icoxfog417/items/8689f943fd1225e24358 https://pair-code.github.io/saliency/ http://blog.brainpad.co.jp/entry/2017/07/10/163000 SAS Viyaでは、各種のディープラーニング(DNN, CNN, RNN)を用いた学習が可能ですが、今回はCNNを用いた画像認識において、判断根拠となり得る情報の出力に関してご紹介します。 この例は、複数のイルカの画像をCNNで学習し、対象の画像(写真)がイルカなのかどうかを判別するものです。 モデルを作成後、以下の画像をモデルに当てはめてスコアリングを実施。 この画像は「イルカ」だと判定されたのですが、その判断根拠の一つとして、以下のように、この画像のどの部分がより重要であると判断されているのかを可視化することが可能になっています。 【レイヤー1のfeature map】 【レイヤー18のfeature map】 SAS Viyaでは、モデルのスコアリング時のオプションとして、指定したレイヤ(層)の特徴マップ(feature map)を画像として指定ライブラリに出力することが可能です。 >> スコアリング用のアクション:”dlScore” の layerOut={出力先ライブラリとテーブル名} オプションと layers={出力対象レイヤ名} オプション >> 上図はライブラリに出力された画像(feature map)を表示したものです。

1 95 96 97 98 99 255