Uncategorized

Analytics | SAS Events
Kristine Vick 0
4 resources to help convince your boss to send you to SAS Analytics Experience

Wondering what makes this conference special?  Over the years I’ve heard from many attendees that it’s the best way to get the most out of their analytics investments. Analytics Experience is a learning-focused conference featuring networking opportunities, training, certification exams and analytics presentations for all skill levels. #AnalyticsX will give you

Analytics | Data for Good
SAS Korea 0
항공우주 연구부터 여론조사까지, 텍스트 분석의 놀라운 잠재력!

텍스트 분석과 자연어처리(NLP; Natural Language Processing)는 소비자의 감성을 분석하는 방법으로 널리 알려져 있습니다. 실제 많은 기업이 비정형 데이터 분석 기술을 이용해 소셜 미디어(SNS) 상의 고객 불만이나 댓글을 분석하고 적절히 대응하고 있는데요. 오늘날 전체 데이터의 90% 이상은 텍스트, 음성, 이미지, 영상 등 구조화되어 있지 않은 비정형 데이터입니다. 수동 분석만으로 이 모든

Learn SAS
Sian Roberts 0
What DS2 can do for the DATA step

The Base SAS DATA step has been a powerful tool for many years for SAS programmers. But as data sets grow and programmers work with massively parallel processing (MPP) computing environments such as Teradata, Hadoop or the SAS High-Performance Analytics grid, the data step remains stubbornly single-threaded. Welcome DS2 –

Analytics | Risk Management
Thorsten Hein 0
IFRS 17 – ein neues Paradigma im Rechnungswesen

Der neue International Financial Reporting Standard (IFRS 17) stellt Versicherer vor Veränderungen, wie sie die Branche selten zuvor erlebt hat. Die Vorgaben sollen die Transparenz im Finanzberichtswesen verbessern und außerdem eine Grundlage für die Vergleichbarkeit mit anderen Branchen schaffen. Analysten und andere Branchenspezialisten haben diese Vergleichbarkeit schon seit langer Zeit

Data Visualization
セルフサービスBI&AIの決定版SAS Visual Analytics 8.3 on SAS Viya新機能概要

SAS Visual Analytics on SAS Viya(以降VA)の次期版8.3に搭載予定の新機能をダイジェストで紹介します。 レポート作成効率の向上 レポート表示能力の拡張 表形式オブジェクトの機能拡張 SAS Mobile SDK 1.レポート作成効率の向上 レポート作成や設定は1度だけ、後はこれを再利用し、レポート作成の効率を向上 1-1.レポートデータビュー 従来からVAではレポート作成・編集時、左側に表示される「データ」リスト画面内で、必要な階層項目や計算項目の作成、カスタムカテゴリーの作成、不要な項目の非表示、などを設定し、このデータビューに基づいてレポートを作成してきました。 VA8.3では、同じデータソースに基づく複数の異なるデータビューを定義し、これを異なるレポート間、ユーザー間で共有し、再利用することができるようになります。 同じデータソースに基づく、異なるレポートを作成する際の効率が大幅に向上します。 1-2.共通フィルター 従来は、オブジェクトごとに右画面内で設定できるフィルター(オブジェクトフィルター)を使用する場合、例えば、レポート内に3つのチャートオブジェクト(円グラフ、クロス表、棒グラフ)があり、円グラフと棒グラフにだけ同じ条件で絞り込みをかけたい場合は、円グラフと棒グラフの両オブジェクトにそれぞれ同じフィルターを設定する必要がありました。 VA8.3では、作成したフィルター定義を複数の異なるオブジェクトに再適用することが可能になります。さらに、このフィルター定義は共通フィルターとしてデータビューに保存し、「1-1.」項で紹介したように、レポート間、ユーザー間でも共有し、再利用が可能になります。 1-3.絞り込み条件保持 従来、レポート参照者がレポートを表示し、好みの条件を選択し、レポート表示内容を変更した場合、そのレポートを一旦閉じた後、再度同じ内容を参照したい場合は、再度同じ作業を繰り返す必要がありました。 しかし、VA8.3では、レポート参照時にレポートに対して行った最終操作結果状態を保持することが可能となり、レポート再表示時に、同じ作業を繰り返す必要が無くなります。 1-4.格子ガイド利用 VA8.3では、レポート作成・編集時に、背景にグリッドを表示し、レポートページ内のお好みの位置に、オブジェクトを正確かつ素早く配置することが可能になります。 2.レポート表示能力の拡張 レポートが、あなたに、ストーリーを語ります。 2-1.再生可能ダッシュボード 再生可能なダッシュボードを使用することで、レポート参照者は、静的ではなく動的なダッシュボードをフルスクリーンで体験することができます。 会議の場などで、PowerPointのスライドショーのように、BIレポートを効果的に表示することも可能です。 あなたが設定したタイミングで、設定した順序で、レポートページ単位やページ内オブジェクト単位で、ダッシュボード内容が自動再生されます。 2-2.レポート自動リフレッシュ機能拡張 従来のVAでは、レポート全体を最短1分間隔で自動リフレッシュすることが可能でしたが、VA8.3では、レポートのページ単位、ページ内のオブジェクト単位に、最短1秒間隔で自動リフレッシュが可能になります。 これによって、リアルタイムBIレポートモニタリングが実現されます。 例えば、ページ内の折れ線グラフは1秒間隔で、リアルタイムなデータの変動を表示し、棒グラフは2分間隔で、別のデータの更新状況を表示する、といったことが可能になります。 3.表形式オブジェクトの機能拡張 そのままでは、数値の羅列で、ビジネス状況を直感的に捉えるのは難しいリスト表やクロス集計表の表現力が拡張されます。 3-1.表のセル内にグラフ表示 表のセル内に、数値だけでなく、棒グラフやヒートマップなどを表示することができます。 このビジュアライゼーションによって、問題点を迅速に特定し、データの傾向を直感的に捉えることが可能になります。 3-2.数値の表示桁数短縮 表のセル内に表示する数値の桁数が多い場合に、ワンタッチで短縮形表示に変更することが可能になります。これによって、表示スペースを節約して、表を読み易くできます。 4.SAS Mobile SDK iOS用SAS SDKおよびAndroid用SAS SDKを使用して、SAS Viyaサーバ上のコンテンツにアクセスするための強力なモバイルアプリを作成することが可能です。

Analytics | Fraud & Security Intelligence
Leendert Kollmer 0
Weg vom Rückspiegel in der Betrugserkennung, hin zu Erkenntnissen und dem vorausschauenden Blick

Im medizinischen Bereich ist eine Autopsie wertvoll, weil sie hilft, die Todesursache zu verstehen. Aber noch wertvoller ist es, die Frühindikatoren einer Krankheit zu identifizieren, damit man darauf reagieren kann, bevor es zu spät ist. Best-in-Class-Unternehmen verfolgen bei der Betrugserkennung einen ähnlichen Ansatz und wenden sich ab von der reinen

Data Management
SAS Korea 0
데이터 보안 및 개인정보보호 성공 전략

7월 11일은 2018년 ‘정보보호의 날’입니다. 2012년 정부 부처는 사이버 공격을 예방하고 정보보호를 생활화하기 위해 공동으로 법정 기념일을 제정했는데요. 최근 페이스북 정보 유출 사건이나 유럽 일반개인정보보호법(GDPR)의 시행 등 데이터 관련 이슈들이 이어지며 정보보호에 대한 대중의 관심도 점점 더 높아지고 있죠! 모바일, 사물인터넷(IoT), 클라우드 등 IT 기술의 발전과 함께 데이터는 빠르게 증가하고

Artificial Intelligence
SAS Viya: DLPyを用いたディープラーニングの判断根拠情報出力

ディープラーニング&画像処理用Python API向けパッケージ:DLPyでは、DLPyの基本的な機能を紹介しました。その中で、ディープラーニングの判断根拠となり得る情報、つまり入力画像のどこに着目しているのかをカラフルなヒートマップとして出力することができるheat_map_analysis()メソッドに触れました。 今回は、heat_map_analysis()メソッドを使用して、ヒートマップを出力する際に指定可能な有効なオプションに関していくつか紹介します。 GPU活用 ヒートマップ解析時の判別(予測)処理再実行回避 ヒートマップ出力対象画像タイプ(正・誤判別)指定 ヒートマップ出力対象画像指定 1.GPU活用 SAS Viyaのディープラーニングでは、ネットワークの層ごとにGPUを使用するかどうかの指定が可能ですが、ヒートマップを出力する際にも、指定したテストデータをモデルに当てはめての予測処理は実行されることになるので、同様にGPUを使用することが可能です。 GPUを使用することで、ヒートマップ出力の時間を短縮することができます。 2.ヒートマップ解析時の判別(予測)処理再実行回避 最初にheat_map_analysis()メソッドを実行する際には、モデルにテストデータを当てはめて判別(予測)処理が行われますが、以降、heat_map_analysis()メソッドを使用して、必要な判断根拠情報を再出力する際には、最初の実行時に計算された値を再利用するので、都度再計算(判別・予測処理)は行わず、より効率的、迅速に、ヒートマップを出力することができます。 「1.GPU活用」でのheat_map_analysis()メソッドではパラメータとして「data=te_img」が指定され、モデルにテストデータを当てはめていましたが、下記の再実行の例では、このパラメータは指定されず、結果のメッセージにも「Using results from model.predict()」と、実行済みの計算結果が使用されている旨が表示されています。 3.ヒートマップ出力対象画像タイプ(正・誤判別)指定 ディープラーニングのモデルにテストデータを当てはめて判別(予測)した結果として、正しく判定された画像と間違った判定が下された画像があります。 heat_map_analysis()メソッドの「img_type」パラメータを使用し、正:”C”(Correct Classification), 誤:“M”(Miss Classified), すべて:“A”(All)、を指定して該当画像の判断根拠情報を出力することが可能です。 以下は、誤判別された画像(img_type=‘M’)の判断根拠情報出力例です。 画像のどの部分に着目して、間違った判断に至ったのかを確認することができるので、モデル精度を改善するためには、学習用にどのような画像が必要なのかといった、示唆も与えてくれます。 4.ヒートマップ出力対象画像指定 heat_map_analysis()メソッドの「filename / image_id」パラメータを使用し、特定の画像を指定して、出力することも可能です。 以下は、画像ファイルリストの上位2つの画像のヒートマップをファイル名指定で出力している例です。 以下は、画像ファイルリストの先頭の画像のヒートマップをID指定で出力している例です。 上記例の詳細に関しては、こちらのGitfubサイトをご覧ください。  DLPyの詳細に関しては、こちらのGithubサイトをご覧ください。  

Risk Management
Peter Plochan 0
Enterprise Model Risk Management: Eine ganzheitliche Sicht ist entscheidend!

Model Risk Management (MRM) ist im Grunde nichts Neues: Finanzinstitute nutzen seit Jahrzehnten Modelle für ihre Entscheidungsfindung. Seit Kurzem jedoch ist das MRM formalisierter und strenger. Regulatorische Anforderungen – zum Beispiel die gezielte Überprüfung interner Modelle (kurz: TRIM) der Europäischen Bankenaufsichtsbehörde (EBA) – nehmen Banken in die Pflicht, die Compliance

1 86 87 88 89 90 255